The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005 |
Resumo: | We obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now. |
id |
SBF-2_cd52b537991ad053cbe4d223dea8b75a |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332008000200005 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgroundsSpin chainsMatrix product ansatzBethe ansatzAdS/CFTWe obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now.Sociedade Brasileira de Física2008-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005Brazilian Journal of Physics v.38 n.2 2008reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332008000200005info:eu-repo/semantics/openAccessLazo,Matheus Jatkoskeeng2008-06-18T00:00:00Zoai:scielo:S0103-97332008000200005Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2008-06-18T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
title |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
spellingShingle |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds Lazo,Matheus Jatkoske Spin chains Matrix product ansatz Bethe ansatz AdS/CFT |
title_short |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
title_full |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
title_fullStr |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
title_full_unstemmed |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
title_sort |
The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds |
author |
Lazo,Matheus Jatkoske |
author_facet |
Lazo,Matheus Jatkoske |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lazo,Matheus Jatkoske |
dc.subject.por.fl_str_mv |
Spin chains Matrix product ansatz Bethe ansatz AdS/CFT |
topic |
Spin chains Matrix product ansatz Bethe ansatz AdS/CFT |
description |
We obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332008000200005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.38 n.2 2008 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734864458842112 |