The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds

Detalhes bibliográficos
Autor(a) principal: Lazo,Matheus Jatkoske
Data de Publicação: 2008
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005
Resumo: We obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now.
id SBF-2_cd52b537991ad053cbe4d223dea8b75a
oai_identifier_str oai:scielo:S0103-97332008000200005
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgroundsSpin chainsMatrix product ansatzBethe ansatzAdS/CFTWe obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now.Sociedade Brasileira de Física2008-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005Brazilian Journal of Physics v.38 n.2 2008reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332008000200005info:eu-repo/semantics/openAccessLazo,Matheus Jatkoskeeng2008-06-18T00:00:00Zoai:scielo:S0103-97332008000200005Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2008-06-18T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
title The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
spellingShingle The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
Lazo,Matheus Jatkoske
Spin chains
Matrix product ansatz
Bethe ansatz
AdS/CFT
title_short The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
title_full The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
title_fullStr The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
title_full_unstemmed The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
title_sort The Matrix Product Ansatz for integrable U(1)N models in Lunin-Maldacena backgrounds
author Lazo,Matheus Jatkoske
author_facet Lazo,Matheus Jatkoske
author_role author
dc.contributor.author.fl_str_mv Lazo,Matheus Jatkoske
dc.subject.por.fl_str_mv Spin chains
Matrix product ansatz
Bethe ansatz
AdS/CFT
topic Spin chains
Matrix product ansatz
Bethe ansatz
AdS/CFT
description We obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM, dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices defining the MPA and find a new class of exactly integrable model unknown up to now.
publishDate 2008
dc.date.none.fl_str_mv 2008-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000200005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332008000200005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.38 n.2 2008
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734864458842112