Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FURG (RI FURG) |
Texto Completo: | http://repositorio.furg.br/handle/1/4545 |
Resumo: | In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth. |
id |
FURG_a09b31fd5e19a6c6aa73fd74af050dc1 |
---|---|
oai_identifier_str |
oai:repositorio.furg.br:1/4545 |
network_acronym_str |
FURG |
network_name_str |
Repositório Institucional da FURG (RI FURG) |
repository_id_str |
|
spelling |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy networkEstimador neuro-fuzzy de concentração diária de biomassa da microalga Synechococcus nidulansblack-boxcellular concentrationpredictive microbiologyconcentração celularmicrobiologia preditivaIn this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.Neste trabalho, foi construído um estimador neuro-fuzzy da concentração de biomassa da microalga Synechococcus nidulans a partir de concentrações iniciais da batelada, visando possibilitar a predição da produtividade. Nove experimentos em réplica foram realizados. O crescimento foi acompanhado diariamente pela transmitância do meio e mantido até o final da fase exponencial de crescimento. O treinamento das redes ocorreu segundo delineamento experimental 33, os fatores foram o número de dias no vetor de entrada (3, 5 e 7 dias), o número de clusters (10, 30 e 50 clusters) e o valor de abrandamento do filtro interno (Sigma) (0,30, 0,45 e 0,60). A variável resposta foi o somatório do erro quadrático das validações. Estas possuíam 24 (A) e 18 (B) dias de crescimento. As validações demonstraram que, em experimentos de longo período (Validação A), é necessário usar poucos clusters e Sigmas altos. Já, em curtos períodos (Validação B), o Sigma não gera alterações. O ponto ótimo ocorreu com 3 dias na entrada, com 10 clusters e Sigma de 0,60, cujo coeficiente de determinação médio foi 0,95. O estimador neuro-fuzzy mostrou-se uma alternativa robusta para predição do crescimento desta microalga.2014-08-28T18:26:17Z2014-08-28T18:26:17Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFURLONG, Vitor Badiale. et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciência e Tecnologia de Alimentos, v. 33, p. 142-147, 2013. Disponível em: <http://www.scielo.br/pdf/cta/v33s1/v33s1a21.pdf>. Acesso em: 22 jun. 2014.0101-2061http://repositorio.furg.br/handle/1/4545engFurlong, Vitor BadialePereira Filho, Renato DutraMargarites, Ana Cláudia FreitasGoularte, Pâmela GuderCosta, Jorge Alberto Vieirainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FURG (RI FURG)instname:Universidade Federal do Rio Grande (FURG)instacron:FURG2023-03-30T13:12:16Zoai:repositorio.furg.br:1/4545Repositório InstitucionalPUBhttps://repositorio.furg.br/oai/request || http://200.19.254.174/oai/requestopendoar:2023-03-30T13:12:16Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network Estimador neuro-fuzzy de concentração diária de biomassa da microalga Synechococcus nidulans |
title |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network |
spellingShingle |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network Furlong, Vitor Badiale black-box cellular concentration predictive microbiology concentração celular microbiologia preditiva |
title_short |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network |
title_full |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network |
title_fullStr |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network |
title_full_unstemmed |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network |
title_sort |
Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network |
author |
Furlong, Vitor Badiale |
author_facet |
Furlong, Vitor Badiale Pereira Filho, Renato Dutra Margarites, Ana Cláudia Freitas Goularte, Pâmela Guder Costa, Jorge Alberto Vieira |
author_role |
author |
author2 |
Pereira Filho, Renato Dutra Margarites, Ana Cláudia Freitas Goularte, Pâmela Guder Costa, Jorge Alberto Vieira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Furlong, Vitor Badiale Pereira Filho, Renato Dutra Margarites, Ana Cláudia Freitas Goularte, Pâmela Guder Costa, Jorge Alberto Vieira |
dc.subject.por.fl_str_mv |
black-box cellular concentration predictive microbiology concentração celular microbiologia preditiva |
topic |
black-box cellular concentration predictive microbiology concentração celular microbiologia preditiva |
description |
In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2014-08-28T18:26:17Z 2014-08-28T18:26:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FURLONG, Vitor Badiale. et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciência e Tecnologia de Alimentos, v. 33, p. 142-147, 2013. Disponível em: <http://www.scielo.br/pdf/cta/v33s1/v33s1a21.pdf>. Acesso em: 22 jun. 2014. 0101-2061 http://repositorio.furg.br/handle/1/4545 |
identifier_str_mv |
FURLONG, Vitor Badiale. et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciência e Tecnologia de Alimentos, v. 33, p. 142-147, 2013. Disponível em: <http://www.scielo.br/pdf/cta/v33s1/v33s1a21.pdf>. Acesso em: 22 jun. 2014. 0101-2061 |
url |
http://repositorio.furg.br/handle/1/4545 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FURG (RI FURG) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Repositório Institucional da FURG (RI FURG) |
collection |
Repositório Institucional da FURG (RI FURG) |
repository.name.fl_str_mv |
Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
|
_version_ |
1813187261513072640 |