Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network

Detalhes bibliográficos
Autor(a) principal: Furlong, Vitor Badiale
Data de Publicação: 2013
Outros Autores: Pereira Filho, Renato Dutra, Margarites, Ana Cláudia Freitas, Goularte, Pâmela Guder, Costa, Jorge Alberto Vieira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da FURG (RI FURG)
Texto Completo: http://repositorio.furg.br/handle/1/4545
Resumo: In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.
id FURG_a09b31fd5e19a6c6aa73fd74af050dc1
oai_identifier_str oai:repositorio.furg.br:1/4545
network_acronym_str FURG
network_name_str Repositório Institucional da FURG (RI FURG)
repository_id_str
spelling Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy networkEstimador neuro-fuzzy de concentração diária de biomassa da microalga Synechococcus nidulansblack-boxcellular concentrationpredictive microbiologyconcentração celularmicrobiologia preditivaIn this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.Neste trabalho, foi construído um estimador neuro-fuzzy da concentração de biomassa da microalga Synechococcus nidulans a partir de concentrações iniciais da batelada, visando possibilitar a predição da produtividade. Nove experimentos em réplica foram realizados. O crescimento foi acompanhado diariamente pela transmitância do meio e mantido até o final da fase exponencial de crescimento. O treinamento das redes ocorreu segundo delineamento experimental 33, os fatores foram o número de dias no vetor de entrada (3, 5 e 7 dias), o número de clusters (10, 30 e 50 clusters) e o valor de abrandamento do filtro interno (Sigma) (0,30, 0,45 e 0,60). A variável resposta foi o somatório do erro quadrático das validações. Estas possuíam 24 (A) e 18 (B) dias de crescimento. As validações demonstraram que, em experimentos de longo período (Validação A), é necessário usar poucos clusters e Sigmas altos. Já, em curtos períodos (Validação B), o Sigma não gera alterações. O ponto ótimo ocorreu com 3 dias na entrada, com 10 clusters e Sigma de 0,60, cujo coeficiente de determinação médio foi 0,95. O estimador neuro-fuzzy mostrou-se uma alternativa robusta para predição do crescimento desta microalga.2014-08-28T18:26:17Z2014-08-28T18:26:17Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFURLONG, Vitor Badiale. et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciência e Tecnologia de Alimentos, v. 33, p. 142-147, 2013. Disponível em: <http://www.scielo.br/pdf/cta/v33s1/v33s1a21.pdf>. Acesso em: 22 jun. 2014.0101-2061http://repositorio.furg.br/handle/1/4545engFurlong, Vitor BadialePereira Filho, Renato DutraMargarites, Ana Cláudia FreitasGoularte, Pâmela GuderCosta, Jorge Alberto Vieirainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FURG (RI FURG)instname:Universidade Federal do Rio Grande (FURG)instacron:FURG2023-03-30T13:12:16Zoai:repositorio.furg.br:1/4545Repositório InstitucionalPUBhttps://repositorio.furg.br/oai/request || http://200.19.254.174/oai/requestopendoar:2023-03-30T13:12:16Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
Estimador neuro-fuzzy de concentração diária de biomassa da microalga Synechococcus nidulans
title Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
spellingShingle Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
Furlong, Vitor Badiale
black-box
cellular concentration
predictive microbiology
concentração celular
microbiologia preditiva
title_short Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
title_full Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
title_fullStr Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
title_full_unstemmed Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
title_sort Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network
author Furlong, Vitor Badiale
author_facet Furlong, Vitor Badiale
Pereira Filho, Renato Dutra
Margarites, Ana Cláudia Freitas
Goularte, Pâmela Guder
Costa, Jorge Alberto Vieira
author_role author
author2 Pereira Filho, Renato Dutra
Margarites, Ana Cláudia Freitas
Goularte, Pâmela Guder
Costa, Jorge Alberto Vieira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Furlong, Vitor Badiale
Pereira Filho, Renato Dutra
Margarites, Ana Cláudia Freitas
Goularte, Pâmela Guder
Costa, Jorge Alberto Vieira
dc.subject.por.fl_str_mv black-box
cellular concentration
predictive microbiology
concentração celular
microbiologia preditiva
topic black-box
cellular concentration
predictive microbiology
concentração celular
microbiologia preditiva
description In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.
publishDate 2013
dc.date.none.fl_str_mv 2013
2014-08-28T18:26:17Z
2014-08-28T18:26:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FURLONG, Vitor Badiale. et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciência e Tecnologia de Alimentos, v. 33, p. 142-147, 2013. Disponível em: <http://www.scielo.br/pdf/cta/v33s1/v33s1a21.pdf>. Acesso em: 22 jun. 2014.
0101-2061
http://repositorio.furg.br/handle/1/4545
identifier_str_mv FURLONG, Vitor Badiale. et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciência e Tecnologia de Alimentos, v. 33, p. 142-147, 2013. Disponível em: <http://www.scielo.br/pdf/cta/v33s1/v33s1a21.pdf>. Acesso em: 22 jun. 2014.
0101-2061
url http://repositorio.furg.br/handle/1/4545
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da FURG (RI FURG)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Repositório Institucional da FURG (RI FURG)
collection Repositório Institucional da FURG (RI FURG)
repository.name.fl_str_mv Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv
_version_ 1813187261513072640