Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde

Detalhes bibliográficos
Autor(a) principal: Lobato Coelho, Rebecca
Data de Publicação: 2024
Outros Autores: Esteves, Júlia Peres, Aquino Ragognete, Isadora, AMARAL COSTA, AYGHOR, de Miranda Ferreira, Yago, Rossi Camargo, Bruno, Minhoto Pozzobon, Amanda, Santos Malaquias Pereira, Marri, Pimentel Sampaio, Breno, Rodrigues Vasques, Amanda, Damas Meireles, Adriano Junio, Boscarioli Ramenzoni, Francesca Bruna, Benedetti Barbosa, Beatriz, Ferreira Ros, Lucas, Zampronio , Isabella
Tipo de documento: Artigo
Idioma: por
Título da fonte: Brazilian Journal of Implantology and Health Sciences
Texto Completo: https://bjihs.emnuvens.com.br/bjihs/article/view/1259
Resumo: The integration of artificial intelligence (AI) and machine learning (ML) in medicine represents a rapidly growing field, promising significant advances in diagnostic and treatment processes. Given this scenario, this integrative review seeks to consolidate and critically analyze the available scientific evidence on the application of these innovative technologies in medical practice. The methodology adopted for this integrative review involved a comprehensive search of the main databases, such as PubMed, Scielo and ScienceDirect, using the relevant descriptors, such as "Artificial Intelligence", "Machine Learning", "Clinical Diagnosis", "Machine Learning" and "Deep Learning". The careful selection of references included relevant studies that address the application of AI and ML in various domains of medicine, with a special focus on the references indicated in Vancouver in this abstract. The results of this review reveal a wide range of successful applications of AI and AM in medical diagnosis and treatment. Studies such as Wang et al. (2019) highlight the progress and challenges of using deep learning in medicine, while work by Erickson et al. (2017) highlights the effectiveness of ML in medical imaging, contributing to advances in clinical practice. Ethical approaches and future impacts on the actions of healthcare professionals, as discussed by Ahuja (2019) and Farhud and Zokaei (2021), emerge as crucial points in the integration of these technologies. The conclusion of this integrative review reinforces the significant transformation provided by the integration of AI and AM in medicine, offering faster and more accurate diagnoses, as well as outlining intrinsic ethical challenges. Patient privacy and ethical considerations become critical factors in this scenario. This comprehensive analysis highlights the continued need for responsible research and development, promoting advances that optimize clinical efficacy and ensure the trust of healthcare professionals and patients in the face of these transformative innovations.
id GOE-1_5a59bae76a548d4214ad1412ad198da9
oai_identifier_str oai:ojs.bjihs.emnuvens.com.br:article/1259
network_acronym_str GOE-1
network_name_str Brazilian Journal of Implantology and Health Sciences
repository_id_str
spelling Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúdeInteligência ArtificialAprendizado de MáquinaDiagnóstico ClínicoMachine LearningDeep LearningThe integration of artificial intelligence (AI) and machine learning (ML) in medicine represents a rapidly growing field, promising significant advances in diagnostic and treatment processes. Given this scenario, this integrative review seeks to consolidate and critically analyze the available scientific evidence on the application of these innovative technologies in medical practice. The methodology adopted for this integrative review involved a comprehensive search of the main databases, such as PubMed, Scielo and ScienceDirect, using the relevant descriptors, such as "Artificial Intelligence", "Machine Learning", "Clinical Diagnosis", "Machine Learning" and "Deep Learning". The careful selection of references included relevant studies that address the application of AI and ML in various domains of medicine, with a special focus on the references indicated in Vancouver in this abstract. The results of this review reveal a wide range of successful applications of AI and AM in medical diagnosis and treatment. Studies such as Wang et al. (2019) highlight the progress and challenges of using deep learning in medicine, while work by Erickson et al. (2017) highlights the effectiveness of ML in medical imaging, contributing to advances in clinical practice. Ethical approaches and future impacts on the actions of healthcare professionals, as discussed by Ahuja (2019) and Farhud and Zokaei (2021), emerge as crucial points in the integration of these technologies. The conclusion of this integrative review reinforces the significant transformation provided by the integration of AI and AM in medicine, offering faster and more accurate diagnoses, as well as outlining intrinsic ethical challenges. Patient privacy and ethical considerations become critical factors in this scenario. This comprehensive analysis highlights the continued need for responsible research and development, promoting advances that optimize clinical efficacy and ensure the trust of healthcare professionals and patients in the face of these transformative innovations.A integração de inteligência artificial (IA) e aprendizado de máquina (AM) na medicina representa um campo em rápido crescimento, prometendo avanços significativos nos processos de diagnóstico e tratamento. Diante desse cenário, a presente revisão integrativa busca consolidar e analisar criticamente as evidências científicas disponíveis sobre a aplicação dessas tecnologias inovadoras na prática médica. A metodologia adotada para esta revisão integrativa envolveu uma busca abrangente nas principais bases de dados, como PubMed, Scielo e Scopus, utilizando os descritores pertinentes, tais como "Inteligência Artificial", "Aprendizado de Máquina", "Diagnóstico Clínico", "Machine Learning" e "Deep Learning". A seleção criteriosa das referências incluiu estudos relevantes que abordam a aplicação de IA e AM em diversos domínios da medicina, com foco especial nas referências indicadas em Vancouver neste resumo. Os resultados desta revisão revelam uma ampla gama de aplicações bem-sucedidas de IA e AM em diagnósticos e tratamentos médicos. Estudos como o de Wang et al. (2019) destacam os progressos e desafios do uso de deep learning na medicina, enquanto trabalhos de Erickson et al. (2017) evidenciam a eficácia do AM em imagens médicas, contribuindo para avanços na prática clínica. Abordagens éticas e impactos futuros na atuação dos profissionais de saúde, conforme discutido por Ahuja (2019) e Farhud e Zokaei (2021), emergem como pontos cruciais na integração dessas tecnologias. A conclusão desta revisão integrativa reforça a transformação significativa proporcionada pela integração de IA e AM na medicina, oferecendo diagnósticos mais rápidos e precisos, bem como delineando desafios éticos intrínsecos. A privacidade do paciente e as considerações éticas tornam-se fatores críticos nesse cenário. Esta análise abrangente destaca a necessidade contínua de pesquisa e desenvolvimento responsável, promovendo avanços que otimizem a eficácia clínica e garantam a confiança dos profissionais de saúde e dos pacientes diante dessas inovações transformadoras.Specialized Dentistry Group2024-01-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://bjihs.emnuvens.com.br/bjihs/article/view/125910.36557/2674-8169.2024v6n1p1282-1290Brazilian Journal of Implantology and Health Sciences ; Vol. 6 No. 1 (2024): BJIHS QUALIS B3; 1282-1290Brazilian Journal of Implantology and Health Sciences ; Vol. 6 Núm. 1 (2024): BJIHS QUALIS B3; 1282-1290Brazilian Journal of Implantology and Health Sciences ; v. 6 n. 1 (2024): BJIHS QUALIS B3; 1282-12902674-8169reponame:Brazilian Journal of Implantology and Health Sciencesinstname:Grupo de Odontologia Especializada (GOE)instacron:GOEporhttps://bjihs.emnuvens.com.br/bjihs/article/view/1259/1451Copyright (c) 2024 Rebecca Lobato Coelho, Júlia Peres Esteves, Isadora Aquino Ragognete, AYGHOR AMARAL COSTA, Yago de Miranda Ferreira, Bruno Rossi Camargo, Amanda Minhoto Pozzobon, Marri Santos Malaquias Pereira, Breno Pimentel Sampaio, Amanda Rodrigues Vasques, Adriano Junio Damas Meireles, Francesca Bruna Boscarioli Ramenzoni, Beatriz Benedetti Barbosa, Lucas Ferreira Ros, Isabella Zampronio https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessLobato Coelho, RebeccaEsteves, Júlia PeresAquino Ragognete, IsadoraAMARAL COSTA, AYGHORde Miranda Ferreira, YagoRossi Camargo, BrunoMinhoto Pozzobon, AmandaSantos Malaquias Pereira, MarriPimentel Sampaio, BrenoRodrigues Vasques, AmandaDamas Meireles, Adriano JunioBoscarioli Ramenzoni, Francesca BrunaBenedetti Barbosa, BeatrizFerreira Ros, Lucas Zampronio , Isabella2024-01-17T15:14:46Zoai:ojs.bjihs.emnuvens.com.br:article/1259Revistahttps://bjihs.emnuvens.com.br/bjihsONGhttps://bjihs.emnuvens.com.br/bjihs/oaijournal.bjihs@periodicosbrasil.com.br2674-81692674-8169opendoar:2024-01-17T15:14:46Brazilian Journal of Implantology and Health Sciences - Grupo de Odontologia Especializada (GOE)false
dc.title.none.fl_str_mv Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
title Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
spellingShingle Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
Lobato Coelho, Rebecca
Inteligência Artificial
Aprendizado de Máquina
Diagnóstico Clínico
Machine Learning
Deep Learning
title_short Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
title_full Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
title_fullStr Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
title_full_unstemmed Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
title_sort Desafios e avanços na personalização diagnóstica e terapêutica na era da inteligência artificial na saúde
author Lobato Coelho, Rebecca
author_facet Lobato Coelho, Rebecca
Esteves, Júlia Peres
Aquino Ragognete, Isadora
AMARAL COSTA, AYGHOR
de Miranda Ferreira, Yago
Rossi Camargo, Bruno
Minhoto Pozzobon, Amanda
Santos Malaquias Pereira, Marri
Pimentel Sampaio, Breno
Rodrigues Vasques, Amanda
Damas Meireles, Adriano Junio
Boscarioli Ramenzoni, Francesca Bruna
Benedetti Barbosa, Beatriz
Ferreira Ros, Lucas
Zampronio , Isabella
author_role author
author2 Esteves, Júlia Peres
Aquino Ragognete, Isadora
AMARAL COSTA, AYGHOR
de Miranda Ferreira, Yago
Rossi Camargo, Bruno
Minhoto Pozzobon, Amanda
Santos Malaquias Pereira, Marri
Pimentel Sampaio, Breno
Rodrigues Vasques, Amanda
Damas Meireles, Adriano Junio
Boscarioli Ramenzoni, Francesca Bruna
Benedetti Barbosa, Beatriz
Ferreira Ros, Lucas
Zampronio , Isabella
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lobato Coelho, Rebecca
Esteves, Júlia Peres
Aquino Ragognete, Isadora
AMARAL COSTA, AYGHOR
de Miranda Ferreira, Yago
Rossi Camargo, Bruno
Minhoto Pozzobon, Amanda
Santos Malaquias Pereira, Marri
Pimentel Sampaio, Breno
Rodrigues Vasques, Amanda
Damas Meireles, Adriano Junio
Boscarioli Ramenzoni, Francesca Bruna
Benedetti Barbosa, Beatriz
Ferreira Ros, Lucas
Zampronio , Isabella
dc.subject.por.fl_str_mv Inteligência Artificial
Aprendizado de Máquina
Diagnóstico Clínico
Machine Learning
Deep Learning
topic Inteligência Artificial
Aprendizado de Máquina
Diagnóstico Clínico
Machine Learning
Deep Learning
description The integration of artificial intelligence (AI) and machine learning (ML) in medicine represents a rapidly growing field, promising significant advances in diagnostic and treatment processes. Given this scenario, this integrative review seeks to consolidate and critically analyze the available scientific evidence on the application of these innovative technologies in medical practice. The methodology adopted for this integrative review involved a comprehensive search of the main databases, such as PubMed, Scielo and ScienceDirect, using the relevant descriptors, such as "Artificial Intelligence", "Machine Learning", "Clinical Diagnosis", "Machine Learning" and "Deep Learning". The careful selection of references included relevant studies that address the application of AI and ML in various domains of medicine, with a special focus on the references indicated in Vancouver in this abstract. The results of this review reveal a wide range of successful applications of AI and AM in medical diagnosis and treatment. Studies such as Wang et al. (2019) highlight the progress and challenges of using deep learning in medicine, while work by Erickson et al. (2017) highlights the effectiveness of ML in medical imaging, contributing to advances in clinical practice. Ethical approaches and future impacts on the actions of healthcare professionals, as discussed by Ahuja (2019) and Farhud and Zokaei (2021), emerge as crucial points in the integration of these technologies. The conclusion of this integrative review reinforces the significant transformation provided by the integration of AI and AM in medicine, offering faster and more accurate diagnoses, as well as outlining intrinsic ethical challenges. Patient privacy and ethical considerations become critical factors in this scenario. This comprehensive analysis highlights the continued need for responsible research and development, promoting advances that optimize clinical efficacy and ensure the trust of healthcare professionals and patients in the face of these transformative innovations.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://bjihs.emnuvens.com.br/bjihs/article/view/1259
10.36557/2674-8169.2024v6n1p1282-1290
url https://bjihs.emnuvens.com.br/bjihs/article/view/1259
identifier_str_mv 10.36557/2674-8169.2024v6n1p1282-1290
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://bjihs.emnuvens.com.br/bjihs/article/view/1259/1451
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Specialized Dentistry Group
publisher.none.fl_str_mv Specialized Dentistry Group
dc.source.none.fl_str_mv Brazilian Journal of Implantology and Health Sciences ; Vol. 6 No. 1 (2024): BJIHS QUALIS B3; 1282-1290
Brazilian Journal of Implantology and Health Sciences ; Vol. 6 Núm. 1 (2024): BJIHS QUALIS B3; 1282-1290
Brazilian Journal of Implantology and Health Sciences ; v. 6 n. 1 (2024): BJIHS QUALIS B3; 1282-1290
2674-8169
reponame:Brazilian Journal of Implantology and Health Sciences
instname:Grupo de Odontologia Especializada (GOE)
instacron:GOE
instname_str Grupo de Odontologia Especializada (GOE)
instacron_str GOE
institution GOE
reponame_str Brazilian Journal of Implantology and Health Sciences
collection Brazilian Journal of Implantology and Health Sciences
repository.name.fl_str_mv Brazilian Journal of Implantology and Health Sciences - Grupo de Odontologia Especializada (GOE)
repository.mail.fl_str_mv journal.bjihs@periodicosbrasil.com.br
_version_ 1796798443594711040