Detrending non stationary data for geostatistical applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Bragantia |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002 |
Resumo: | The use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back transformation of the data afterwards is very easily done by adding back the subtracted trend surface. |
id |
IAC-1_8a5127d6f4027ca391ed7c22378a1703 |
---|---|
oai_identifier_str |
oai:scielo:S0006-87052010000500002 |
network_acronym_str |
IAC-1 |
network_name_str |
Bragantia |
repository_id_str |
|
spelling |
Detrending non stationary data for geostatistical applicationsSemivariogramsstationaritytopographyscale of variationThe use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back transformation of the data afterwards is very easily done by adding back the subtracted trend surface.Instituto Agronômico de Campinas2010-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002Bragantia v.69 suppl.0 2010reponame:Bragantiainstname:Instituto Agronômico de Campinas (IAC)instacron:IAC10.1590/S0006-87052010000500002info:eu-repo/semantics/openAccessVieira,Sidney RosaCarvalho,José Ruy Porto deCeddia,Marcos BacisGonzález,Antonio Pazeng2011-02-14T00:00:00Zoai:scielo:S0006-87052010000500002Revistahttps://www.scielo.br/j/brag/https://old.scielo.br/oai/scielo-oai.phpbragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br1678-44990006-8705opendoar:2011-02-14T00:00Bragantia - Instituto Agronômico de Campinas (IAC)false |
dc.title.none.fl_str_mv |
Detrending non stationary data for geostatistical applications |
title |
Detrending non stationary data for geostatistical applications |
spellingShingle |
Detrending non stationary data for geostatistical applications Vieira,Sidney Rosa Semivariograms stationarity topography scale of variation |
title_short |
Detrending non stationary data for geostatistical applications |
title_full |
Detrending non stationary data for geostatistical applications |
title_fullStr |
Detrending non stationary data for geostatistical applications |
title_full_unstemmed |
Detrending non stationary data for geostatistical applications |
title_sort |
Detrending non stationary data for geostatistical applications |
author |
Vieira,Sidney Rosa |
author_facet |
Vieira,Sidney Rosa Carvalho,José Ruy Porto de Ceddia,Marcos Bacis González,Antonio Paz |
author_role |
author |
author2 |
Carvalho,José Ruy Porto de Ceddia,Marcos Bacis González,Antonio Paz |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Vieira,Sidney Rosa Carvalho,José Ruy Porto de Ceddia,Marcos Bacis González,Antonio Paz |
dc.subject.por.fl_str_mv |
Semivariograms stationarity topography scale of variation |
topic |
Semivariograms stationarity topography scale of variation |
description |
The use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back transformation of the data afterwards is very easily done by adding back the subtracted trend surface. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0006-87052010000500002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto Agronômico de Campinas |
publisher.none.fl_str_mv |
Instituto Agronômico de Campinas |
dc.source.none.fl_str_mv |
Bragantia v.69 suppl.0 2010 reponame:Bragantia instname:Instituto Agronômico de Campinas (IAC) instacron:IAC |
instname_str |
Instituto Agronômico de Campinas (IAC) |
instacron_str |
IAC |
institution |
IAC |
reponame_str |
Bragantia |
collection |
Bragantia |
repository.name.fl_str_mv |
Bragantia - Instituto Agronômico de Campinas (IAC) |
repository.mail.fl_str_mv |
bragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br |
_version_ |
1754193301475426304 |