Detrending non stationary data for geostatistical applications

Detalhes bibliográficos
Autor(a) principal: Vieira,Sidney Rosa
Data de Publicação: 2010
Outros Autores: Carvalho,José Ruy Porto de, Ceddia,Marcos Bacis, González,Antonio Paz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Bragantia
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002
Resumo: The use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back transformation of the data afterwards is very easily done by adding back the subtracted trend surface.
id IAC-1_8a5127d6f4027ca391ed7c22378a1703
oai_identifier_str oai:scielo:S0006-87052010000500002
network_acronym_str IAC-1
network_name_str Bragantia
repository_id_str
spelling Detrending non stationary data for geostatistical applicationsSemivariogramsstationaritytopographyscale of variationThe use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back transformation of the data afterwards is very easily done by adding back the subtracted trend surface.Instituto Agronômico de Campinas2010-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002Bragantia v.69 suppl.0 2010reponame:Bragantiainstname:Instituto Agronômico de Campinas (IAC)instacron:IAC10.1590/S0006-87052010000500002info:eu-repo/semantics/openAccessVieira,Sidney RosaCarvalho,José Ruy Porto deCeddia,Marcos BacisGonzález,Antonio Pazeng2011-02-14T00:00:00Zoai:scielo:S0006-87052010000500002Revistahttps://www.scielo.br/j/brag/https://old.scielo.br/oai/scielo-oai.phpbragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br1678-44990006-8705opendoar:2011-02-14T00:00Bragantia - Instituto Agronômico de Campinas (IAC)false
dc.title.none.fl_str_mv Detrending non stationary data for geostatistical applications
title Detrending non stationary data for geostatistical applications
spellingShingle Detrending non stationary data for geostatistical applications
Vieira,Sidney Rosa
Semivariograms
stationarity
topography
scale of variation
title_short Detrending non stationary data for geostatistical applications
title_full Detrending non stationary data for geostatistical applications
title_fullStr Detrending non stationary data for geostatistical applications
title_full_unstemmed Detrending non stationary data for geostatistical applications
title_sort Detrending non stationary data for geostatistical applications
author Vieira,Sidney Rosa
author_facet Vieira,Sidney Rosa
Carvalho,José Ruy Porto de
Ceddia,Marcos Bacis
González,Antonio Paz
author_role author
author2 Carvalho,José Ruy Porto de
Ceddia,Marcos Bacis
González,Antonio Paz
author2_role author
author
author
dc.contributor.author.fl_str_mv Vieira,Sidney Rosa
Carvalho,José Ruy Porto de
Ceddia,Marcos Bacis
González,Antonio Paz
dc.subject.por.fl_str_mv Semivariograms
stationarity
topography
scale of variation
topic Semivariograms
stationarity
topography
scale of variation
description The use of geostatistics requires at least that the intrinsic hypothesis be satisfied. The presence of a trend in the data invalidates this hypothesis. One of the ways of solving this problem is by subtracting a function fitted to the original data and working with the residuals. This technique also represents a change to a smaller scale of the variability and surface roughness. This paper describes the detrending technique of subtracting a trend surface fitted by the least squares method and discusses the results using topographical data as examples. The objective is to show how the detrending technique works for different scales and degrees of trend and how to interpret the results. It is shown that the simplest the surfaces fitted that does the work of removing the trend the best are the results obtained. The use of jack knifing is proved useful to validate the resulting semivariograms. For most of the applications and depending upon the scale, a linear or a parabolic surface works reasonably well. The back transformation of the data afterwards is very easily done by adding back the subtracted trend surface.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0006-87052010000500002
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Agronômico de Campinas
publisher.none.fl_str_mv Instituto Agronômico de Campinas
dc.source.none.fl_str_mv Bragantia v.69 suppl.0 2010
reponame:Bragantia
instname:Instituto Agronômico de Campinas (IAC)
instacron:IAC
instname_str Instituto Agronômico de Campinas (IAC)
instacron_str IAC
institution IAC
reponame_str Bragantia
collection Bragantia
repository.name.fl_str_mv Bragantia - Instituto Agronômico de Campinas (IAC)
repository.mail.fl_str_mv bragantia@iac.sp.gov.br||bragantia@iac.sp.gov.br
_version_ 1754193301475426304