Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Comum do Brasil - Deposita |
Texto Completo: | https://deposita.ibict.br/handle/deposita/418 |
Resumo: | O elevado consumo de cimento Portland ao redor do mundo, traz consigo a responsabilidade de seus impactos ocasionados ao meio ambiente em virtude de suas elevadas emissões de dióxido de carbono (CO2), originadas no processo de fabricação do clínquer. Dessa forma, uma estratégia adotada visando a redução das emissões de CO2, é a substituição parcial do clínquer por materiais cimentícios suplementares (MCS). Entre os MCS encontram-se as argilas calcinadas, em especial as cauliníticas. As argilas, para se tornarem ativas, ou seja, para que o silício e o alumínio estejam disponíveis para reagir com hidróxido de cálcio, e carbonatos no caso de cimento LC3, necessitam ser ativadas e isso ocorre por meio de temperaturas acima de 500°C. A caulinita é um dos principais argilominerais que compõem o caulim apresentando a composição química Al2Si2O5(OH)4, tratando-se de um filossilicato dioctaédrico de estrutura 1:1. A desidroxilação consiste na remoção dessa hidroxila, desorganizando a estrutura cristalina, disponibilizando sílica e alumina para as reações pozolânicas. Essa pesquisa teve por objetivo avaliar a influência do grau de desidroxilação na reatividade argilas cauliníticas. Para tanto, empregou-se duas argilas cauliníticas denominadas como caulim branco e caulim rosa, que possuem um somatório ∑SiO2;Al2O3;Fe2O3 de 79 e 77%, respectivamente, e somatório de ∑SiO2;Al2O3 de 78% para a branca e 76% para a rosa. Foram empregadas temperaturas de calcinação de 550, 650, 750 e 850ºC e tempos de permanência de 15 e 45 minutos. Foram relacionados o grau de desidroxilação com as características físicas e químicas das argilas, bem como com o consumo de Portlandita (CH), água combinada e resistência à compressão de pastas de cimento. Após a análise dos resultados, foi possível inferir que apesar do grau de desidroxilação influenciar positivamente no consumo de CH e no teor de água combinada, o fator preponderante para o desenvolvimento da reatividade das argilas avaliadas foi a área superficial específica. Sendo os parâmetros químicos das argilas semelhantes, bem como, tamanho de partícula, ordenamento de hidroxilas e regularidade superficial, a maior reatividade da argila caulinítica rosa pode ser atribuída à sua maior área superficial específica (o dobro da A.S.E. do caulim branco). |
id |
IBICT-1_34d929baefe41c90e9cab78fbc6d5be8 |
---|---|
oai_identifier_str |
oai:https://deposita.ibict.br:deposita/418 |
network_acronym_str |
IBICT-1 |
network_name_str |
Repositório Comum do Brasil - Deposita |
repository_id_str |
4658 |
spelling |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadasCimento Portland; Argilas cauliníticas calcinadas; Grau de desidroxilação; Reatividade; Área superficial específica.Engenharias IO elevado consumo de cimento Portland ao redor do mundo, traz consigo a responsabilidade de seus impactos ocasionados ao meio ambiente em virtude de suas elevadas emissões de dióxido de carbono (CO2), originadas no processo de fabricação do clínquer. Dessa forma, uma estratégia adotada visando a redução das emissões de CO2, é a substituição parcial do clínquer por materiais cimentícios suplementares (MCS). Entre os MCS encontram-se as argilas calcinadas, em especial as cauliníticas. As argilas, para se tornarem ativas, ou seja, para que o silício e o alumínio estejam disponíveis para reagir com hidróxido de cálcio, e carbonatos no caso de cimento LC3, necessitam ser ativadas e isso ocorre por meio de temperaturas acima de 500°C. A caulinita é um dos principais argilominerais que compõem o caulim apresentando a composição química Al2Si2O5(OH)4, tratando-se de um filossilicato dioctaédrico de estrutura 1:1. A desidroxilação consiste na remoção dessa hidroxila, desorganizando a estrutura cristalina, disponibilizando sílica e alumina para as reações pozolânicas. Essa pesquisa teve por objetivo avaliar a influência do grau de desidroxilação na reatividade argilas cauliníticas. Para tanto, empregou-se duas argilas cauliníticas denominadas como caulim branco e caulim rosa, que possuem um somatório ∑SiO2;Al2O3;Fe2O3 de 79 e 77%, respectivamente, e somatório de ∑SiO2;Al2O3 de 78% para a branca e 76% para a rosa. Foram empregadas temperaturas de calcinação de 550, 650, 750 e 850ºC e tempos de permanência de 15 e 45 minutos. Foram relacionados o grau de desidroxilação com as características físicas e químicas das argilas, bem como com o consumo de Portlandita (CH), água combinada e resistência à compressão de pastas de cimento. Após a análise dos resultados, foi possível inferir que apesar do grau de desidroxilação influenciar positivamente no consumo de CH e no teor de água combinada, o fator preponderante para o desenvolvimento da reatividade das argilas avaliadas foi a área superficial específica. Sendo os parâmetros químicos das argilas semelhantes, bem como, tamanho de partícula, ordenamento de hidroxilas e regularidade superficial, a maior reatividade da argila caulinítica rosa pode ser atribuída à sua maior área superficial específica (o dobro da A.S.E. do caulim branco).The high consumption of Portland cement worldwide brings with it the responsibility for its environmental impacts due to its high carbon dioxide (CO2) emissions originating from the clinker manufacturing process. Thus, a strategy adopted to reduce CO2 emissions is the partial replacement of clinker with supplementary cementitious materials (SCMs). Among the SCMs are calcined clays, especially kaolinitic clays. In order for clays to become active, meaning that silicon and aluminum are available to react with calcium hydroxide and carbonates in the case of LC3 cement, they need to be activated, which occurs through temperatures above 500°C. Kaolinite is one of the main clay minerals that compose kaolin, with a chemical composition of Al2Si2O5(OH)4, being a 1:1 dioctahedral phyllosilicate structure. Dehydroxylation consists of the removal of this hydroxyl, disrupting the crystalline structure and making silica and alumina available for pozzolanic reactions. This research aimed to evaluate the influence of dehydroxylation degree on the reactivity of kaolinitic clays. For this purpose, two kaolinitic clays called white kaolin and pink kaolin were used, with a total sum of ∑SiO2;Al2O3;Fe2O3 of 79% and 77%, respectively, and a sum of ∑SiO2;Al2O3 of 78% for the white clay and 76% for the pink clay. Calcination temperatures of 550, 650, 750, and 850°C were used, with residence times of 15 and 45 minutes. The degree of dehydroxylation was correlated with the physical and chemical characteristics of the clays, as well as with the consumption of Portlandite (CH), combined water, and compressive strength of cement pastes. After analyzing the results, it was possible to infer that although the degree of dehydroxylation positively influenced the consumption of CH and the content of combined water, the most influential factor in the development of reactivity of the evaluated clays was the specific surface area. As the chemical parameters of the clays were similar, as well as particle size, arrangement of hydroxyls, and surface regularity, the higher reactivity of the pink kaolinitic clay can be attributed to its higher specific surface area (twice the SS of the white clay).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade do Vale do Rio dos Sinos (Unisinos)Universidade do Vale do Rio dos Sinos (Unisinos)BrasilPrograma de Pós-Graduação em Engenharia Civilhttps://lattes.cnpq.br/658874923509911702164734033Kulakowski, Marlova Piva51776510020http://lattes.cnpq.br/5195306459511343Rêgo, João Henrique da Silvahttp://lattes.cnpq.br/6282100880834079Brehm , Feliciane Andradehttp://lattes.cnpq.br/8126174297312115Mancio , Mauriciohttp://lattes.cnpq.br/4760250136044505Pires, Maikon Moreira de2023-09-01T14:50:54Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPires, Maikon Moreira de. Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas. Dissertação (mestrado) – Universidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Engenharia Civil, 2023.https://deposita.ibict.br/handle/deposita/418porABDELMELEK, Nabil; LUBLOY, Eva. Evaluation of the mechanical properties of high-strength cement paste at elevated temperatures using metakaolin. Journal of Thermal Analysis and Calorimetry, v. 145, n. 6, p. 2891-2905, 2021. ABRÃO, Pedro Cesar Rodrigues Alves. O uso de pozolanas como materiais cimentícios suplementares: disponibilidade, reatividade, demanda de água e indicadores ambientais. Dissertação de Mestrado (Programa de Pós-graduação da Escola Politécnica da USP) - Universidade de São Paulo. São Paulo, SP, 2019. AÏTCIN, P.-C. Portland cement. In: Science and Technology of Concrete Admixtures. Woodhead Publishing, 2016. p. 27-51. AKCAY, Burcu; TASDEMIR, Mehmet Ali. Autogenous Shrinkage, Pozzolanic Activity and Mechanical Properties of Metakaolin Blended Cementitious Materials. KSCE Journal of Civil Engineering, v. 23, n. 11, p. 4727-4734, 2019. AMBROISE, J. Elaboration de liants pouzzolaniques à moyenne température et études de leurs propriétés physico-chimiques et mécaniques. 1984.. Tese (Doutorado em Engenharia Civil) – Institut National des Sciences Appliqués de Lyon. Lyon, 1984. AMBROISE, J.; MARTIN-CALLE, S.; PERA, J. Pozzolanic behavior of thermally activated kaolin. Special Publication, v. 132, p. 731-748, 1992. AMBROZEWICZ, P. K.; Materiais de Construção: normas, especificações, aplicação e ensaios de laboratório. São Paulo: Pini, 2012. ANTONI, Mathieu. Investigation of cement substitution by blends of calcined clays and limestone. EPFL, 2013. ARGIN, G.; UZAL, B. Enhancement of pozzolanic activity of calcined clays by limestone powder addition. Construction and Building Materials, v. 284, p. 122789, 2021. ARIZZI, A.; CULTRONE, G. Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue: A petrographic and physical-mechanical study. Construction and Building Materials, v. 184, p. 382-390, 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12653: Materiais pozolânicos - Requisitos. Rio de Janeiro, 2015. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12655: Concreto de cimento Portland – Preparo, controle, recebimento e aceitação – Procedimento. Rio de Janeiro, 2015. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15894-1: Metacaulim para uso com cimento Portland em concreto, argamassa e pasta - Parte 1: Requisitos. Rio de Janeiro, 2010. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15895: Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fixado – Método Chapelle modificado. Rio de Janeiro, 2010. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16697: Cimento Portland – Requisitos. Rio de Janeiro, 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: Cimento Portland – Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, 2019. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 18: Cimento Portland – Análise química – Determinação da perda ao fogo. Rio de Janeiro, 2012. AVET, François; BOEHM-COURJAULT, Emmanuelle; SCRIVENER, Karen. Investigation of CASH composition, morphology and density in Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, v. 115, p. 70-79, 2019. AVET, François; LI, Xuerun; SCRIVENER, Karen. Determination of the amount of reacted metakaolin in calcined clay blends. Cement and Concrete Research, v. 106, p. 40-48, 2018. AVET, François; SCRIVENER, Karen. Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, v. 107, p. 124-135, 2018. BADOGIANNIS, E.; KAKALI, G.; TSIVILIS, S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. Journal of thermal analysis and calorimetry, v. 81, n. 2, p. 457-462, 2005. BAHHOU et al. Using Calcined Marls as Non-Common Supplementary Cementitious Materials - A Critical Review. Minerals, v. 11, n. 5, p. 517, 2021. BAQUERIZO et al. Methods to determine hydration states of minerals and cement hydrates. Cement and Concrete Research, v. 65, p. 85-95, 2014. BARATA, Márcio Santos; ANGÉLICA, Rômulo Simões. Caracterização dos resíduos cauliníticos das indústrias de mineração de caulim da Amazônia como matéria-prima para produção de pozolanas de alta reatividade. Cerâmica, v. 58, p. 36-42, 2012. BATTAGIN, Arnaldo Forti. Cimento portland. In: ISAIA, Geraldo Cechella (ed.). Concreto: ciência e tecnologia. São Paulo: IBRACON, 2011, v. 1, p. 185-232. BENTUR, A.; ODLER, I. Development and nature of interfacial. Interfacial transition zone in concrete, p. 18, 1996. BERNAL et al. Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures, v. 50, n. 1, p. 1-13, 2017. BERNAL, S. A.; JUENGER, M. C. G.; KE, XINYUAN.; MATTHES, W.; LOTHEBACH, B.; DE BELIE, N.; PROVIS, J. L. Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures, v. 50, n. 1, 2017. BERODIER, E.; SCRIVENER, K. Understanding the filler effect on the nucleation and growth of C-S-H. Journal American Ceramic. V. 97, pg. 3764-3773, 2014. BICH, C. Contribution À L’Étude De L’Activation Thermique Du Kaolin: Évolution De La Structure Cristallographique Et Activité Pouzzolanique. 2005. 264 f. Tese (Doutorado em Engenharia Civil) – Escola de doutorado MEGA, L’Institut National des Sciences Appliquées de Lyon. Lyon, 2005. BICH, C.; AMBROISE, J.; PÉRA, J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, v. 44, n. 3–4, p. 194–200, 2009. BIZZOZERO, Julien. Hydration and dimensional stability of calcium aluminate cement based systems. Tese de doutorado (Programa de Doutorado em Ciência e Engenharia dos Materiais) - École Polytechnique Fédérale de Lausanne (EPFL), Suíça, 2014. BRINDLEY, G. W.; NAKAHIRA, M. The kaoIinite‐mullite reaction series: I, a survey of outstanding problems. Journal of the American Ceramic Society, v. 42, n. 7, p. 311-314, 1959. BUCHER et al. Service life of metakaolin-based concrete exposed to carbonation: Comparison with blended cement containing fly ash, blast furnace slag and limestone filler. Cement and Concrete Research, v. 99, p. 18-29, 2017. BULLARD, Jeffrey W. et al. Mechanisms of cement hydration. Cement and concrete research, v. 41, n. 12, p. 1208-1223, 2011. BULLERJAHN et al. Novel SCM produced by the co-calcination of aluminosilicates with dolomite. Cement and Concrete Research, v. 134, p. 106083, 2020. CÂMARA, Myrelle Y. d. F. Estudo da durabilidade de concretos com utilização do cimento lc³. Dissertação de Mestrado (Programa de Pós-graduação em Estruturas e Construção Civil - Universidade de Brasília. Brasília, DF, 2020. CARA et al. Assessment of pozzolanic potential in lime–water systems of raw and calcined kaolinic clays from the Donnigazza Mine (Sardinia–Italy). Applied clay science, v. 33, n. 1, p. 66-72, 2006. CARDINAUD et al. Calcined clay–Limestone cements: Hydration processes with high and low-grade kaolinite clays. Construction and Building Materials, v. 277, p. 122271, 2021. CASES, Jean-Maurice et al. Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bulletin de Minéralogie, v. 105, n. 5, p. 439-455, 1982. CHEN et al. Cement equivalence of metakaolin for workability, cohesiveness, strength and sorptivity of concrete. Materials, v. 13, n. 7, p. 1646, 2020a. CHEN et al. Role of montmorillonite, kaolinite, or illite in pyrite flotation: differences in clay behavior based on their structures. Langmuir, v. 36, n. 36, p. 10860-10867, 2020b. CHENG, Shukai et al. Pozzolanic activity of mechanochemically and thermally activated coal-series kaolin in cement-based materials. Construction and Building Materials, v. 299, p. 123972, 2021. CHRIST, Roberto; TUTIKIAN, Bernardo; HELENE, Paulo. Método de dosagem UNISINOS para UHPC. Concreto, ed. 105, p. 30-33, 2022. CHUAH et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide, Construction and Building Materials, v. 73, pp. 113–124, 2014. CRAEYE et al. Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, v. 40, n. 6, p. 908-913, 2010. CYR, Martin; LAWRENCE, Philippe; RINGOT, Erick. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and concrete research, v. 36, n. 2, p. 264-277, 2006. DAL MOLIN, D. C. C. Adições Minerais. In Concreto: Ciência e Tecnologia. Editor Geraldo C. Isaia. Volume 1, Cap. 8, pg 276, 2011. DAMIDOT et al. Thermodynamics and cement science. Cement and Concrete Research, v. 41, n. 7, p. 679-695, 2011. DANNER, Tobias. Reactivity of calcined clays. Tese de Doutorado (Faculty of Natural Sciences and Technology - Department of Materials Science and Engineering) - Norwegian University of Science and Technology. Noruega, 2013. DE PAULA L.G. Análise Termo econômica do Processo de Produção de Cimento Portland com Co-processamento de Misturas de Resíduos. Dissertação de Mestrado (Programa de Pós-graduação em Engenharia Mecânica) - Universidade Federal de Itajubá. Itajubá, MG, 2009. DESCHNER, F. et al. Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, v. 42, n. 10, p. 1389–1400, 2012. DHANDAPANI et al. Towards ternary binders involving limestone additions - a review. Cement and Concrete Research, v. 143, 2021. DUNSTETTER, Frederic; DE NOIRFONTAINE, M.-N.; COURTIAL, Mireille. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis. Cement and Concrete Research, v. 36, n. 1, p. 39-53, 2006. ENVIRONMENT et al. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, v. 114, p. 2-26, 2018. EZ-ZAKI et al. A Fresh View on Limestone Calcined Clay Cement (LC3) Pastes. Materials, v. 14, n. 11, p. 3037, 2021. FERNANDES, Altair. Avaliação do processo de combustão da biomassa (bagaço de cana) para valorização das cinzas geradas. Dissertação de Mestrado (Programa de Pós-graduação em Engenharia Civil) – Universidade do Vale do Rio dos Sinos. São Leopoldo, RS, 2019. FERNANDEZ, Rodrigo; MARTIRENA, Fernando; SCRIVENER, Karen L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and concrete research, v. 41, n. 1, p. 113-122, 2011. FORTES, Gustavo Matto et al. Avaliação do uso de resíduo de bauxita como aditivo pozolânico no cimento Portland. In: 55º CONGRESSO BRASILEIRO DE CERÂMICA, 2011, Porto de Galinhas-PE, Anais. 1405p. FRÖHLICH, Jéssica. Uso de resíduo cerâmico em cimentos ternários tipo LC³: estudo dos produtos da hidratação. Dissertação de Mestrado (Programa de Pós-graduação em Engenharia Civil) - Universidade do Vale do Rio dos Sinos. São Leopoldo, RS, 2019. GARTNER, Ellis; MARUYAMA, Ippei; CHEN, Jeffrey. A new model for the CSH phase formed during the hydration of Portland cements. Cement and Concrete Research, v. 97, p. 95-106, 2017. GOBBO, L. A. Os compostos do clínquer Portland: sua caracterização por difração de raios-X e quantificação por refinamento de Rietveld. Dissertação de Mestrado (Programa de Pós-graduação em Recursos Naturais e Hidrogeologia) – Instituto de Geociências, USP. São Paulo, SP, 2003. GOMES, C. F. Argilas: O que são e para que servem. Lisboa, Fundação Calouste Gulbenkian, 1 ed., 457 p., 1988. GUATAME-GARCIA et al. Toward an on-line characterization of kaolin calcination process using short-wave infrared spectroscopy. Mineral Processing and Extractive Metallurgy Review, v. 39, n. 6, p. 420-431, 2018. HAN et al. Hydration–Strength–Workability–Durability of Binary, Ternary, and Quaternary Composite Pastes. Materials, v. 15, n. 1, p. 204, 2022. HANEIN, Theodore et al. Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Materials and Structures, v. 55, n. 1, p. 3, 2022. HOLLANDERS et al. Pozzolanic reactivity of pure calcined clays. Applied Clay Science, v. 132, p. 552-560, 2016. IEA/CSI. International Energy Agency/Cement Sustainability Initiative. Technology Roadmap: Low-Carbon Transition in the Cement Industry. Paris: WBCSD, 2017. 66 p. Disponível em: < https://www.wbcsd.org/contentwbc/download/4586/61682/1>. Acesso em 28 fev 2022. IRASSAR, E. F. Sulfate attack on cementitious materials containing limestone filler—A review. Cement and Concrete Research, v. 39, n. 3, p. 241-254, 2009. JUENGER, Maria CG; SNELLINGS, Ruben; BERNAL, Susan A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, v. 122, p. 257-273, 2019. KANTRO, D. L. Influence of Water-Reducing Admixtures on Properties of Cement Paste - A Miniature Slump Test. Cement, Concrete and Aggregates, v. 2, n. 2, p. 95–102, 1 jan. 1980. KLIMESCH, Danielle S.; RAY, Abhi. DTA–TGA of unstirred autoclaved metakaolin–lime–quartz slurries. The formation of hydrogarnet. Thermochimica Acta, v. 316, n. 2, p. 149-154, 1998. KRISHNAN, S.; BISHNOI, S. Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay. Cement and concrete research. V. 108, pg., 116-128, 2018 L’HÔPITAL et al. Incorporation of aluminium in calcium-silicate-hydrates. Cement and Concrete Research, v. 75, p. 91-103, 2015. LI et al. Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction And Building Materials, [s.l.], v. 199, p. 359-368, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.conbuildmat.2018.12.003. LIU et al. Influence of calcined coal-series kaolin fineness on properties of cement paste and mortar. Construction and Building Materials, v. 171, p. 558-565, 2018. LONGHI, M. A. Álcali-ativação de lodo de caulim calcinado e cinza pesada com ativadores convencionais e silicato de sódio alternativo. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil: Construção) - Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, 2015. LOPEZ, R. F. Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries. Tese de doutorado (Programa de Pós-graduação em Ciência e Engenharia dos Materiais) - Ecole Polytechnique Federal de Lausanne. Lausanne, Suíça, 2009. LOTHENBACH, Barbara et al. Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, v. 38, n. 6, p. 848-860, 2008. MALACARNE, C. S. Desenvolvimento e caracterização de cimentos LC3 – cimentos ternários a base de argila calcinada e calcário – a partir de matérias primas do Rio Grande do Sul. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura) - Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, 2019. MANTELLATO, S.; PALACIOS, M.; FLATT, R. J. Impact of sample preparation on the specific surface area of synthetic ettringite. Cement and Concrete Research, [S. l.], v. 86, p. 20–28, 2016. Disponível em: https://doi.org/10.1016/j.cemconres.2016.04.005 MARCHON, D., FLATT, R.J., 2016. Mechanisms of cement hydration. In: Aïtcin, P.-C., Flatt, R.J. (Eds.), Science and Technology of Concrete Admixtures, Elsevier (Chapter 8), pp. 129e146. MCCARTHY, M. J.; ROBL, T.; CSETENYI, L. J. Recovery, processing, and usage of wet-stored fly ash. Coal Combustion Products (CCP's). Woodhead Publishing, 2017. p. 343-367. MEDINA, Engler Apaza. Pozolanicidade do metacaulim em sistemas binários com cimento Portland e hidróxido de cálcio. 2011. Dissertação (Mestrado em Engenharia de Construção Civil e Urbana) – Escola Politécnica da Universidade de São Paulo (USP), São Paulo, 2011. MEHTA, P. Kumar; MONTEIRO, Paulo J. M. Concreto: microestrutura, propriedades e materiais. 2. ed. São Paulo: IBRACON, 2014. MEINHOLD, R. H. et al. Flash calcination of kaolinite studied by DSC, TG and MAS NMR. Journal of Thermal Analysis and Calorimetry, v. 38, n. 9, p. 2053-2065, 1992. MELO et al. Effects of thermal and chemical treatments on physical properties of kaolinite. Ceramics International, v. 36, n. 1, p. 33-38, 2010. MOHAMMED, Siline. Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, v. 140, p. 10-19, 2017. MSINJILI et al. Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Materials and Structures, v. 52, n. 5, p. 1-14, 2019. MURAT, M. A. C. C.; COMEL, C. Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cement and concrete research, v. 13, n. 5, p. 631-637, 1983. MUZENDA et al. The role of limestone and calcined clay on the rheological properties of LC3, Cement and Concrete Composites, Volume 107, 2020, 103516, ISSN 0958-9465. NAIR et al. A study on fresh properties of limestone calcined clay blended cementitious systems. Construction and Building Materials, v. 254, p. 119326, 2020. NEVILLE, Adam M. Propriedades do concreto. Tradução Ruy Alberto Cremonini. 5ª Edição. Cap 1. Editora Bookman, recurso eletrônico. Porto alegre, 2016. NEVILLE, Adam M.; BROOKS, J. Concrete Technology. [S. l.]: Harlow, England; New York: Prentice Hall, 2010, 2010. E-book. NGUYEN, Quang Dieu; KHAN, Mohammad Shakhaout Hossain; CASTEL, Arnaud. Engineering properties of limestone calcined clay concrete. Journal of Advanced Concrete Technology, v. 16, n. 8, p. 343-357, 2018. NUNES, David. Influência dos óxidos de ferro na reação pozolânica da metacaulinita. Tese de Doutorado (Programa de Pós-graduação em Engenharia Civil) - Universidade do Vale do Rio dos Sinos. São Leopoldo, RS, 2021. OLIVEIRA, Flaviane Bernardino de. Influência do tipo de cimento Portland na consistência de pastas cimentícias. Trabalho de conclusão de curso (Curso de Bacharelado em Ciência e Tecnologia) - Universidade Federal Rural do Semi-Árido. Mossoró, RN, 2021. OLIVEIRA, I. R. de et al. Dispersão e empacotamento de partículas: princípios e aplicações em processamento cerâmico. ed. São Paulo: FAZENDO ARTE, pp 224, ISBN 85-86425-15-X. 2000. PALACIOS et al. Laser diffraction and gas adsorption techniques. In: SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A practical guide to microstructural analysis of cementitious materials. New York: Taylor & Francis, 2016. PALOU et al. The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. Journal of Thermal Analysis and Calorimetry, v. 133, n. 1, p. 77-86, 2018. PAPATZANI, S.; PAINE, K.; CALABRIA-HOLLEY, J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials, v. 74, p. 219-234, 2015. PRADO, Lisiane Pereira. Estudo da interface do Concreto Pré-Moldado e Concreto de Altíssimo Desempenho Reforçado com Fibras. Tese de Doutorado (Programa de Pós-graduação em Engenharia Civil) - Universidade de São Paulo. São Paulo, SP, 2020. PUERTA-FALLA, Guillermo et al. The influence of metakaolin on limestone reactivity in cementitious materials. In: Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete. Springer Netherlands, 2015. p. 11-19. PY, L. G. Balanço de sulfatos e hidratação de cimentos ternários à base de calcário e argilas calcinadas. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura) - Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, 2021. QUENNOZ, Alexandra; SCRIVENER, Karen L. Hydration of C3A–gypsum systems. Cement and concrete research, v. 42, n. 7, p. 1032-1041, 2012. RAKHIMOV et al. Properties of Portland cement pastes enriched with addition of calcined marl. Journal of Building Engineering, v. 11, p. 30-36, 2017. RASHAD, A. M. Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview. Construction and Building Materials, v. 41, p. 303-318, 2013. RUSSEL, J.D., 1987. Infrared spectroscopy of inorganic compounds. Laboratory Methods in Infrared Spectroscopy. Wiley, New York. SABBAGH, Farzaneh; KIAROSTAMI, Khadijeh; KHATIR, Nadia Mahmoudi. A comparative study on the clays incorporated with acrylamide-based hydrogels. Advances in Applied NanoBio-Technologies, v. 2, n. 4, p. 15-23, 2021. SABIR, B. B.; WILD, S.; BAI, J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites. V. 23, pg. 441-454, 2001. SALVADOR, Sylvain. Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak-calcined products. Cement and concrete research, v. 25, n. 1, p. 102-112, 1995. SCHÖLER, A. et al. Hydration of quaternary portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder, Cement and Concrete Composites, v. 55, p. 374–382, 2015. SCRIVENER et al. Calcined clay limestone cements (LC3). Cement and Concrete Research, v. 114, p. 49-56, 2018a. SCRIVENER et al. Impacting factors and properties of limestone calcined clay cements (LC3). Green Materials, v. 7, n. 1, p. 3-14, 2018b. SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL, USA:: Crc Press, 2016. SCRIVENER, Karen L.; JUILLAND, Patrick; MONTEIRO, Paulo JM. Advances in understanding hydration of Portland cement. Cement and Concrete Research, v. 78, p. 38-56, 2015. SHAFIQ et al. Calcined kaolin as cement replacing material and its use in high strength concrete. Construction and Building Materials, Guildford, v. 81, p. 313–323, fev 2015. Disponível em: http://dx.doi.org/10.1016/j.conbuildmat.2015.02.050. SHARMA et al. Limestone calcined clay cement and concrete: A state-of-the-art review. Cement and Concrete Research, v. 149, p. 106564, 2021. SHVARZMAN et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and concrete research, v. 33, n. 3, p. 405-416, 2003. SNELLINGS, R. X-ray powder diffraction applied to cement. In: SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A practical guide to microstructural analysis of cementitious materials. New York: Taylor & Francis, 2016. SNELLINGS, Ruben; MERTENS, Gilles; ELSEN, Jan. Supplementary cementitious materials. Reviews in Mineralogy and Geochemistry, v. 74, n. 1, p. 211-278, 2012. SOUSA, Matheus Ian Castro; DA SILVA RÊGO, João Henrique. Effect of nanosilica/metakaolin ratio on the calcium alumina silicate hydrate (CASH) formed in ternary cement pastes. Journal of Building Engineering, v. 38, p. 102226, 2021. TAYLOR, H. F. W. Cement Chemistry. Londres: Academic Press, 1990. TAYLOR-LANGE et al. Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Applied Clay Science, v. 108, p. 84-93, 2015. TIRONI et al. Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, v. 28, n. 1, p. 276-281, 2012. TIRONI, Alejandra et al. Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Applied Clay Science, v. 147, p. 11-18, 2017. TRIGO, Ana Paula Moreno; LIBORIO, Jefferson Benedicto Libardi. Doping technique in the interfacial transition zone between paste and lateritic aggregate for the production of structural concretes. Materials Research, v. 17, p. 16-22, 2014. WANG et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, v. 181, p. 659-672, 2018. WANG et al. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: Hydration, mechanical properties and durability. Journal of Cleaner Production, v. 219, p. 763-774, 2019. WEBER et al. Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Materials Characterization, v. 58, n. 11-12, p. 1217-1228, 2007. WILSON, M. J.; WILSON, L.; PATEY, I. . The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay Minerals, v. 49, n. 2, p. 147–164, 2014. WORRELL et al. Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment, v. 26, n. 1, p. 303-329, 2001. YANGUATIN et al. Effect of thermal treatment on pozzolanic activity of excavated waste clays. Construction and Building Materials, v. 211, p. 814-823, 2019. ZHANG et al. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3). Cement and Concrete Composites, v. 114, p. 103766, 2020. ZHOU, Ding. Developing supplementary cementitious materials from waste London clay. Tese de Doutorado (Departamento de Engenharia Civil e Ambiental) - Faculty of Engineering Imperial College London. London, United Kingdom, 2016. ZUNINO, Franco. Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics. Tese de doutorado (Programa de Doutorado em Ciência e Engenharia dos Materiais) - École Polytechnique Fédérale de Lausanne (EPFL), Suíça, 2020. ZUNINO, Franco; BOEHM-COURJAULT, Emmanuelle; SCRIVENER, Karen. The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Materials and Structures, v. 53, p. 1-15, 2020. ZUNINO, Franco; MARTIRENA, Fernando; SCRIVENER, Karen. Limestone Calcined Clay Cements (LC³). ACI Materials Journal, v. 118, n. 3, 2021. ZUNINO, Franco; SCRIVENER, Karen. Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials. Construction and Building Materials, v. 244, p. 118335, 2020. ZUNINO, Franco; SCRIVENER, Karen. The influence of the filler effect on the sulfate requirement of blended cements. Cement and Concrete Research, v. 126, p. 105918, 2019.info:eu-repo/semantics/openAccessreponame:Repositório Comum do Brasil - Depositainstname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)instacron:IBICT2023-09-01T14:51:44Zoai:https://deposita.ibict.br:deposita/418Repositório ComumPUBhttp://deposita.ibict.br/oai/requestdeposita@ibict.bropendoar:46582023-09-01T14:51:44Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)false |
dc.title.none.fl_str_mv |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
title |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
spellingShingle |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas Pires, Maikon Moreira de Cimento Portland; Argilas cauliníticas calcinadas; Grau de desidroxilação; Reatividade; Área superficial específica. Engenharias I |
title_short |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
title_full |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
title_fullStr |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
title_full_unstemmed |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
title_sort |
Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas |
author |
Pires, Maikon Moreira de |
author_facet |
Pires, Maikon Moreira de |
author_role |
author |
dc.contributor.none.fl_str_mv |
https://lattes.cnpq.br/6588749235099117 02164734033 Kulakowski, Marlova Piva 51776510020 http://lattes.cnpq.br/5195306459511343 Rêgo, João Henrique da Silva http://lattes.cnpq.br/6282100880834079 Brehm , Feliciane Andrade http://lattes.cnpq.br/8126174297312115 Mancio , Mauricio http://lattes.cnpq.br/4760250136044505 |
dc.contributor.author.fl_str_mv |
Pires, Maikon Moreira de |
dc.subject.por.fl_str_mv |
Cimento Portland; Argilas cauliníticas calcinadas; Grau de desidroxilação; Reatividade; Área superficial específica. Engenharias I |
topic |
Cimento Portland; Argilas cauliníticas calcinadas; Grau de desidroxilação; Reatividade; Área superficial específica. Engenharias I |
description |
O elevado consumo de cimento Portland ao redor do mundo, traz consigo a responsabilidade de seus impactos ocasionados ao meio ambiente em virtude de suas elevadas emissões de dióxido de carbono (CO2), originadas no processo de fabricação do clínquer. Dessa forma, uma estratégia adotada visando a redução das emissões de CO2, é a substituição parcial do clínquer por materiais cimentícios suplementares (MCS). Entre os MCS encontram-se as argilas calcinadas, em especial as cauliníticas. As argilas, para se tornarem ativas, ou seja, para que o silício e o alumínio estejam disponíveis para reagir com hidróxido de cálcio, e carbonatos no caso de cimento LC3, necessitam ser ativadas e isso ocorre por meio de temperaturas acima de 500°C. A caulinita é um dos principais argilominerais que compõem o caulim apresentando a composição química Al2Si2O5(OH)4, tratando-se de um filossilicato dioctaédrico de estrutura 1:1. A desidroxilação consiste na remoção dessa hidroxila, desorganizando a estrutura cristalina, disponibilizando sílica e alumina para as reações pozolânicas. Essa pesquisa teve por objetivo avaliar a influência do grau de desidroxilação na reatividade argilas cauliníticas. Para tanto, empregou-se duas argilas cauliníticas denominadas como caulim branco e caulim rosa, que possuem um somatório ∑SiO2;Al2O3;Fe2O3 de 79 e 77%, respectivamente, e somatório de ∑SiO2;Al2O3 de 78% para a branca e 76% para a rosa. Foram empregadas temperaturas de calcinação de 550, 650, 750 e 850ºC e tempos de permanência de 15 e 45 minutos. Foram relacionados o grau de desidroxilação com as características físicas e químicas das argilas, bem como com o consumo de Portlandita (CH), água combinada e resistência à compressão de pastas de cimento. Após a análise dos resultados, foi possível inferir que apesar do grau de desidroxilação influenciar positivamente no consumo de CH e no teor de água combinada, o fator preponderante para o desenvolvimento da reatividade das argilas avaliadas foi a área superficial específica. Sendo os parâmetros químicos das argilas semelhantes, bem como, tamanho de partícula, ordenamento de hidroxilas e regularidade superficial, a maior reatividade da argila caulinítica rosa pode ser atribuída à sua maior área superficial específica (o dobro da A.S.E. do caulim branco). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-01T14:50:54Z 2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Pires, Maikon Moreira de. Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas. Dissertação (mestrado) – Universidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Engenharia Civil, 2023. https://deposita.ibict.br/handle/deposita/418 |
identifier_str_mv |
Pires, Maikon Moreira de. Influência do grau de desidroxilação na reatividade de argilas cauliníticas calcinadas. Dissertação (mestrado) – Universidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Engenharia Civil, 2023. |
url |
https://deposita.ibict.br/handle/deposita/418 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
ABDELMELEK, Nabil; LUBLOY, Eva. Evaluation of the mechanical properties of high-strength cement paste at elevated temperatures using metakaolin. Journal of Thermal Analysis and Calorimetry, v. 145, n. 6, p. 2891-2905, 2021. ABRÃO, Pedro Cesar Rodrigues Alves. O uso de pozolanas como materiais cimentícios suplementares: disponibilidade, reatividade, demanda de água e indicadores ambientais. Dissertação de Mestrado (Programa de Pós-graduação da Escola Politécnica da USP) - Universidade de São Paulo. São Paulo, SP, 2019. AÏTCIN, P.-C. Portland cement. In: Science and Technology of Concrete Admixtures. Woodhead Publishing, 2016. p. 27-51. AKCAY, Burcu; TASDEMIR, Mehmet Ali. Autogenous Shrinkage, Pozzolanic Activity and Mechanical Properties of Metakaolin Blended Cementitious Materials. KSCE Journal of Civil Engineering, v. 23, n. 11, p. 4727-4734, 2019. AMBROISE, J. Elaboration de liants pouzzolaniques à moyenne température et études de leurs propriétés physico-chimiques et mécaniques. 1984.. Tese (Doutorado em Engenharia Civil) – Institut National des Sciences Appliqués de Lyon. Lyon, 1984. AMBROISE, J.; MARTIN-CALLE, S.; PERA, J. Pozzolanic behavior of thermally activated kaolin. Special Publication, v. 132, p. 731-748, 1992. AMBROZEWICZ, P. K.; Materiais de Construção: normas, especificações, aplicação e ensaios de laboratório. São Paulo: Pini, 2012. ANTONI, Mathieu. Investigation of cement substitution by blends of calcined clays and limestone. EPFL, 2013. ARGIN, G.; UZAL, B. Enhancement of pozzolanic activity of calcined clays by limestone powder addition. Construction and Building Materials, v. 284, p. 122789, 2021. ARIZZI, A.; CULTRONE, G. Comparing the pozzolanic activity of aerial lime mortars made with metakaolin and fluid catalytic cracking catalyst residue: A petrographic and physical-mechanical study. Construction and Building Materials, v. 184, p. 382-390, 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12653: Materiais pozolânicos - Requisitos. Rio de Janeiro, 2015. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12655: Concreto de cimento Portland – Preparo, controle, recebimento e aceitação – Procedimento. Rio de Janeiro, 2015. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15894-1: Metacaulim para uso com cimento Portland em concreto, argamassa e pasta - Parte 1: Requisitos. Rio de Janeiro, 2010. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15895: Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fixado – Método Chapelle modificado. Rio de Janeiro, 2010. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 16697: Cimento Portland – Requisitos. Rio de Janeiro, 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7215: Cimento Portland – Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, 2019. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 18: Cimento Portland – Análise química – Determinação da perda ao fogo. Rio de Janeiro, 2012. AVET, François; BOEHM-COURJAULT, Emmanuelle; SCRIVENER, Karen. Investigation of CASH composition, morphology and density in Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, v. 115, p. 70-79, 2019. AVET, François; LI, Xuerun; SCRIVENER, Karen. Determination of the amount of reacted metakaolin in calcined clay blends. Cement and Concrete Research, v. 106, p. 40-48, 2018. AVET, François; SCRIVENER, Karen. Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, v. 107, p. 124-135, 2018. BADOGIANNIS, E.; KAKALI, G.; TSIVILIS, S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. Journal of thermal analysis and calorimetry, v. 81, n. 2, p. 457-462, 2005. BAHHOU et al. Using Calcined Marls as Non-Common Supplementary Cementitious Materials - A Critical Review. Minerals, v. 11, n. 5, p. 517, 2021. BAQUERIZO et al. Methods to determine hydration states of minerals and cement hydrates. Cement and Concrete Research, v. 65, p. 85-95, 2014. BARATA, Márcio Santos; ANGÉLICA, Rômulo Simões. Caracterização dos resíduos cauliníticos das indústrias de mineração de caulim da Amazônia como matéria-prima para produção de pozolanas de alta reatividade. Cerâmica, v. 58, p. 36-42, 2012. BATTAGIN, Arnaldo Forti. Cimento portland. In: ISAIA, Geraldo Cechella (ed.). Concreto: ciência e tecnologia. São Paulo: IBRACON, 2011, v. 1, p. 185-232. BENTUR, A.; ODLER, I. Development and nature of interfacial. Interfacial transition zone in concrete, p. 18, 1996. BERNAL et al. Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures, v. 50, n. 1, p. 1-13, 2017. BERNAL, S. A.; JUENGER, M. C. G.; KE, XINYUAN.; MATTHES, W.; LOTHEBACH, B.; DE BELIE, N.; PROVIS, J. L. Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures, v. 50, n. 1, 2017. BERODIER, E.; SCRIVENER, K. Understanding the filler effect on the nucleation and growth of C-S-H. Journal American Ceramic. V. 97, pg. 3764-3773, 2014. BICH, C. Contribution À L’Étude De L’Activation Thermique Du Kaolin: Évolution De La Structure Cristallographique Et Activité Pouzzolanique. 2005. 264 f. Tese (Doutorado em Engenharia Civil) – Escola de doutorado MEGA, L’Institut National des Sciences Appliquées de Lyon. Lyon, 2005. BICH, C.; AMBROISE, J.; PÉRA, J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, v. 44, n. 3–4, p. 194–200, 2009. BIZZOZERO, Julien. Hydration and dimensional stability of calcium aluminate cement based systems. Tese de doutorado (Programa de Doutorado em Ciência e Engenharia dos Materiais) - École Polytechnique Fédérale de Lausanne (EPFL), Suíça, 2014. BRINDLEY, G. W.; NAKAHIRA, M. The kaoIinite‐mullite reaction series: I, a survey of outstanding problems. Journal of the American Ceramic Society, v. 42, n. 7, p. 311-314, 1959. BUCHER et al. Service life of metakaolin-based concrete exposed to carbonation: Comparison with blended cement containing fly ash, blast furnace slag and limestone filler. Cement and Concrete Research, v. 99, p. 18-29, 2017. BULLARD, Jeffrey W. et al. Mechanisms of cement hydration. Cement and concrete research, v. 41, n. 12, p. 1208-1223, 2011. BULLERJAHN et al. Novel SCM produced by the co-calcination of aluminosilicates with dolomite. Cement and Concrete Research, v. 134, p. 106083, 2020. CÂMARA, Myrelle Y. d. F. Estudo da durabilidade de concretos com utilização do cimento lc³. Dissertação de Mestrado (Programa de Pós-graduação em Estruturas e Construção Civil - Universidade de Brasília. Brasília, DF, 2020. CARA et al. Assessment of pozzolanic potential in lime–water systems of raw and calcined kaolinic clays from the Donnigazza Mine (Sardinia–Italy). Applied clay science, v. 33, n. 1, p. 66-72, 2006. CARDINAUD et al. Calcined clay–Limestone cements: Hydration processes with high and low-grade kaolinite clays. Construction and Building Materials, v. 277, p. 122271, 2021. CASES, Jean-Maurice et al. Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bulletin de Minéralogie, v. 105, n. 5, p. 439-455, 1982. CHEN et al. Cement equivalence of metakaolin for workability, cohesiveness, strength and sorptivity of concrete. Materials, v. 13, n. 7, p. 1646, 2020a. CHEN et al. Role of montmorillonite, kaolinite, or illite in pyrite flotation: differences in clay behavior based on their structures. Langmuir, v. 36, n. 36, p. 10860-10867, 2020b. CHENG, Shukai et al. Pozzolanic activity of mechanochemically and thermally activated coal-series kaolin in cement-based materials. Construction and Building Materials, v. 299, p. 123972, 2021. CHRIST, Roberto; TUTIKIAN, Bernardo; HELENE, Paulo. Método de dosagem UNISINOS para UHPC. Concreto, ed. 105, p. 30-33, 2022. CHUAH et al. Nano reinforced cement and concrete composites and new perspective from graphene oxide, Construction and Building Materials, v. 73, pp. 113–124, 2014. CRAEYE et al. Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, v. 40, n. 6, p. 908-913, 2010. CYR, Martin; LAWRENCE, Philippe; RINGOT, Erick. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cement and concrete research, v. 36, n. 2, p. 264-277, 2006. DAL MOLIN, D. C. C. Adições Minerais. In Concreto: Ciência e Tecnologia. Editor Geraldo C. Isaia. Volume 1, Cap. 8, pg 276, 2011. DAMIDOT et al. Thermodynamics and cement science. Cement and Concrete Research, v. 41, n. 7, p. 679-695, 2011. DANNER, Tobias. Reactivity of calcined clays. Tese de Doutorado (Faculty of Natural Sciences and Technology - Department of Materials Science and Engineering) - Norwegian University of Science and Technology. Noruega, 2013. DE PAULA L.G. Análise Termo econômica do Processo de Produção de Cimento Portland com Co-processamento de Misturas de Resíduos. Dissertação de Mestrado (Programa de Pós-graduação em Engenharia Mecânica) - Universidade Federal de Itajubá. Itajubá, MG, 2009. DESCHNER, F. et al. Hydration of Portland cement with high replacement by siliceous fly ash. Cement and Concrete Research, v. 42, n. 10, p. 1389–1400, 2012. DHANDAPANI et al. Towards ternary binders involving limestone additions - a review. Cement and Concrete Research, v. 143, 2021. DUNSTETTER, Frederic; DE NOIRFONTAINE, M.-N.; COURTIAL, Mireille. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis. Cement and Concrete Research, v. 36, n. 1, p. 39-53, 2006. ENVIRONMENT et al. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, v. 114, p. 2-26, 2018. EZ-ZAKI et al. A Fresh View on Limestone Calcined Clay Cement (LC3) Pastes. Materials, v. 14, n. 11, p. 3037, 2021. FERNANDES, Altair. Avaliação do processo de combustão da biomassa (bagaço de cana) para valorização das cinzas geradas. Dissertação de Mestrado (Programa de Pós-graduação em Engenharia Civil) – Universidade do Vale do Rio dos Sinos. São Leopoldo, RS, 2019. FERNANDEZ, Rodrigo; MARTIRENA, Fernando; SCRIVENER, Karen L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and concrete research, v. 41, n. 1, p. 113-122, 2011. FORTES, Gustavo Matto et al. Avaliação do uso de resíduo de bauxita como aditivo pozolânico no cimento Portland. In: 55º CONGRESSO BRASILEIRO DE CERÂMICA, 2011, Porto de Galinhas-PE, Anais. 1405p. FRÖHLICH, Jéssica. Uso de resíduo cerâmico em cimentos ternários tipo LC³: estudo dos produtos da hidratação. Dissertação de Mestrado (Programa de Pós-graduação em Engenharia Civil) - Universidade do Vale do Rio dos Sinos. São Leopoldo, RS, 2019. GARTNER, Ellis; MARUYAMA, Ippei; CHEN, Jeffrey. A new model for the CSH phase formed during the hydration of Portland cements. Cement and Concrete Research, v. 97, p. 95-106, 2017. GOBBO, L. A. Os compostos do clínquer Portland: sua caracterização por difração de raios-X e quantificação por refinamento de Rietveld. Dissertação de Mestrado (Programa de Pós-graduação em Recursos Naturais e Hidrogeologia) – Instituto de Geociências, USP. São Paulo, SP, 2003. GOMES, C. F. Argilas: O que são e para que servem. Lisboa, Fundação Calouste Gulbenkian, 1 ed., 457 p., 1988. GUATAME-GARCIA et al. Toward an on-line characterization of kaolin calcination process using short-wave infrared spectroscopy. Mineral Processing and Extractive Metallurgy Review, v. 39, n. 6, p. 420-431, 2018. HAN et al. Hydration–Strength–Workability–Durability of Binary, Ternary, and Quaternary Composite Pastes. Materials, v. 15, n. 1, p. 204, 2022. HANEIN, Theodore et al. Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. Materials and Structures, v. 55, n. 1, p. 3, 2022. HOLLANDERS et al. Pozzolanic reactivity of pure calcined clays. Applied Clay Science, v. 132, p. 552-560, 2016. IEA/CSI. International Energy Agency/Cement Sustainability Initiative. Technology Roadmap: Low-Carbon Transition in the Cement Industry. Paris: WBCSD, 2017. 66 p. Disponível em: < https://www.wbcsd.org/contentwbc/download/4586/61682/1>. Acesso em 28 fev 2022. IRASSAR, E. F. Sulfate attack on cementitious materials containing limestone filler—A review. Cement and Concrete Research, v. 39, n. 3, p. 241-254, 2009. JUENGER, Maria CG; SNELLINGS, Ruben; BERNAL, Susan A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, v. 122, p. 257-273, 2019. KANTRO, D. L. Influence of Water-Reducing Admixtures on Properties of Cement Paste - A Miniature Slump Test. Cement, Concrete and Aggregates, v. 2, n. 2, p. 95–102, 1 jan. 1980. KLIMESCH, Danielle S.; RAY, Abhi. DTA–TGA of unstirred autoclaved metakaolin–lime–quartz slurries. The formation of hydrogarnet. Thermochimica Acta, v. 316, n. 2, p. 149-154, 1998. KRISHNAN, S.; BISHNOI, S. Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay. Cement and concrete research. V. 108, pg., 116-128, 2018 L’HÔPITAL et al. Incorporation of aluminium in calcium-silicate-hydrates. Cement and Concrete Research, v. 75, p. 91-103, 2015. LI et al. Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction And Building Materials, [s.l.], v. 199, p. 359-368, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.conbuildmat.2018.12.003. LIU et al. Influence of calcined coal-series kaolin fineness on properties of cement paste and mortar. Construction and Building Materials, v. 171, p. 558-565, 2018. LONGHI, M. A. Álcali-ativação de lodo de caulim calcinado e cinza pesada com ativadores convencionais e silicato de sódio alternativo. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil: Construção) - Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, 2015. LOPEZ, R. F. Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries. Tese de doutorado (Programa de Pós-graduação em Ciência e Engenharia dos Materiais) - Ecole Polytechnique Federal de Lausanne. Lausanne, Suíça, 2009. LOTHENBACH, Barbara et al. Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, v. 38, n. 6, p. 848-860, 2008. MALACARNE, C. S. Desenvolvimento e caracterização de cimentos LC3 – cimentos ternários a base de argila calcinada e calcário – a partir de matérias primas do Rio Grande do Sul. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura) - Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, 2019. MANTELLATO, S.; PALACIOS, M.; FLATT, R. J. Impact of sample preparation on the specific surface area of synthetic ettringite. Cement and Concrete Research, [S. l.], v. 86, p. 20–28, 2016. Disponível em: https://doi.org/10.1016/j.cemconres.2016.04.005 MARCHON, D., FLATT, R.J., 2016. Mechanisms of cement hydration. In: Aïtcin, P.-C., Flatt, R.J. (Eds.), Science and Technology of Concrete Admixtures, Elsevier (Chapter 8), pp. 129e146. MCCARTHY, M. J.; ROBL, T.; CSETENYI, L. J. Recovery, processing, and usage of wet-stored fly ash. Coal Combustion Products (CCP's). Woodhead Publishing, 2017. p. 343-367. MEDINA, Engler Apaza. Pozolanicidade do metacaulim em sistemas binários com cimento Portland e hidróxido de cálcio. 2011. Dissertação (Mestrado em Engenharia de Construção Civil e Urbana) – Escola Politécnica da Universidade de São Paulo (USP), São Paulo, 2011. MEHTA, P. Kumar; MONTEIRO, Paulo J. M. Concreto: microestrutura, propriedades e materiais. 2. ed. São Paulo: IBRACON, 2014. MEINHOLD, R. H. et al. Flash calcination of kaolinite studied by DSC, TG and MAS NMR. Journal of Thermal Analysis and Calorimetry, v. 38, n. 9, p. 2053-2065, 1992. MELO et al. Effects of thermal and chemical treatments on physical properties of kaolinite. Ceramics International, v. 36, n. 1, p. 33-38, 2010. MOHAMMED, Siline. Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: A review. Construction and Building Materials, v. 140, p. 10-19, 2017. MSINJILI et al. Comparison of calcined illitic clays (brick clays) and low-grade kaolinitic clays as supplementary cementitious materials. Materials and Structures, v. 52, n. 5, p. 1-14, 2019. MURAT, M. A. C. C.; COMEL, C. Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cement and concrete research, v. 13, n. 5, p. 631-637, 1983. MUZENDA et al. The role of limestone and calcined clay on the rheological properties of LC3, Cement and Concrete Composites, Volume 107, 2020, 103516, ISSN 0958-9465. NAIR et al. A study on fresh properties of limestone calcined clay blended cementitious systems. Construction and Building Materials, v. 254, p. 119326, 2020. NEVILLE, Adam M. Propriedades do concreto. Tradução Ruy Alberto Cremonini. 5ª Edição. Cap 1. Editora Bookman, recurso eletrônico. Porto alegre, 2016. NEVILLE, Adam M.; BROOKS, J. Concrete Technology. [S. l.]: Harlow, England; New York: Prentice Hall, 2010, 2010. E-book. NGUYEN, Quang Dieu; KHAN, Mohammad Shakhaout Hossain; CASTEL, Arnaud. Engineering properties of limestone calcined clay concrete. Journal of Advanced Concrete Technology, v. 16, n. 8, p. 343-357, 2018. NUNES, David. Influência dos óxidos de ferro na reação pozolânica da metacaulinita. Tese de Doutorado (Programa de Pós-graduação em Engenharia Civil) - Universidade do Vale do Rio dos Sinos. São Leopoldo, RS, 2021. OLIVEIRA, Flaviane Bernardino de. Influência do tipo de cimento Portland na consistência de pastas cimentícias. Trabalho de conclusão de curso (Curso de Bacharelado em Ciência e Tecnologia) - Universidade Federal Rural do Semi-Árido. Mossoró, RN, 2021. OLIVEIRA, I. R. de et al. Dispersão e empacotamento de partículas: princípios e aplicações em processamento cerâmico. ed. São Paulo: FAZENDO ARTE, pp 224, ISBN 85-86425-15-X. 2000. PALACIOS et al. Laser diffraction and gas adsorption techniques. In: SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A practical guide to microstructural analysis of cementitious materials. New York: Taylor & Francis, 2016. PALOU et al. The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. Journal of Thermal Analysis and Calorimetry, v. 133, n. 1, p. 77-86, 2018. PAPATZANI, S.; PAINE, K.; CALABRIA-HOLLEY, J. A comprehensive review of the models on the nanostructure of calcium silicate hydrates. Construction and Building Materials, v. 74, p. 219-234, 2015. PRADO, Lisiane Pereira. Estudo da interface do Concreto Pré-Moldado e Concreto de Altíssimo Desempenho Reforçado com Fibras. Tese de Doutorado (Programa de Pós-graduação em Engenharia Civil) - Universidade de São Paulo. São Paulo, SP, 2020. PUERTA-FALLA, Guillermo et al. The influence of metakaolin on limestone reactivity in cementitious materials. In: Calcined Clays for Sustainable Concrete: Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete. Springer Netherlands, 2015. p. 11-19. PY, L. G. Balanço de sulfatos e hidratação de cimentos ternários à base de calcário e argilas calcinadas. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura) - Universidade Federal do Rio Grande do Sul. Porto Alegre, RS, 2021. QUENNOZ, Alexandra; SCRIVENER, Karen L. Hydration of C3A–gypsum systems. Cement and concrete research, v. 42, n. 7, p. 1032-1041, 2012. RAKHIMOV et al. Properties of Portland cement pastes enriched with addition of calcined marl. Journal of Building Engineering, v. 11, p. 30-36, 2017. RASHAD, A. M. Metakaolin as cementitious material: History, scours, production and composition-A comprehensive overview. Construction and Building Materials, v. 41, p. 303-318, 2013. RUSSEL, J.D., 1987. Infrared spectroscopy of inorganic compounds. Laboratory Methods in Infrared Spectroscopy. Wiley, New York. SABBAGH, Farzaneh; KIAROSTAMI, Khadijeh; KHATIR, Nadia Mahmoudi. A comparative study on the clays incorporated with acrylamide-based hydrogels. Advances in Applied NanoBio-Technologies, v. 2, n. 4, p. 15-23, 2021. SABIR, B. B.; WILD, S.; BAI, J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cement and Concrete Composites. V. 23, pg. 441-454, 2001. SALVADOR, Sylvain. Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak-calcined products. Cement and concrete research, v. 25, n. 1, p. 102-112, 1995. SCHÖLER, A. et al. Hydration of quaternary portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder, Cement and Concrete Composites, v. 55, p. 374–382, 2015. SCRIVENER et al. Calcined clay limestone cements (LC3). Cement and Concrete Research, v. 114, p. 49-56, 2018a. SCRIVENER et al. Impacting factors and properties of limestone calcined clay cements (LC3). Green Materials, v. 7, n. 1, p. 3-14, 2018b. SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL, USA:: Crc Press, 2016. SCRIVENER, Karen L.; JUILLAND, Patrick; MONTEIRO, Paulo JM. Advances in understanding hydration of Portland cement. Cement and Concrete Research, v. 78, p. 38-56, 2015. SHAFIQ et al. Calcined kaolin as cement replacing material and its use in high strength concrete. Construction and Building Materials, Guildford, v. 81, p. 313–323, fev 2015. Disponível em: http://dx.doi.org/10.1016/j.conbuildmat.2015.02.050. SHARMA et al. Limestone calcined clay cement and concrete: A state-of-the-art review. Cement and Concrete Research, v. 149, p. 106564, 2021. SHVARZMAN et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and concrete research, v. 33, n. 3, p. 405-416, 2003. SNELLINGS, R. X-ray powder diffraction applied to cement. In: SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A practical guide to microstructural analysis of cementitious materials. New York: Taylor & Francis, 2016. SNELLINGS, Ruben; MERTENS, Gilles; ELSEN, Jan. Supplementary cementitious materials. Reviews in Mineralogy and Geochemistry, v. 74, n. 1, p. 211-278, 2012. SOUSA, Matheus Ian Castro; DA SILVA RÊGO, João Henrique. Effect of nanosilica/metakaolin ratio on the calcium alumina silicate hydrate (CASH) formed in ternary cement pastes. Journal of Building Engineering, v. 38, p. 102226, 2021. TAYLOR, H. F. W. Cement Chemistry. Londres: Academic Press, 1990. TAYLOR-LANGE et al. Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Applied Clay Science, v. 108, p. 84-93, 2015. TIRONI et al. Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Construction and Building Materials, v. 28, n. 1, p. 276-281, 2012. TIRONI, Alejandra et al. Pozzolanic activity of calcined halloysite-rich kaolinitic clays. Applied Clay Science, v. 147, p. 11-18, 2017. TRIGO, Ana Paula Moreno; LIBORIO, Jefferson Benedicto Libardi. Doping technique in the interfacial transition zone between paste and lateritic aggregate for the production of structural concretes. Materials Research, v. 17, p. 16-22, 2014. WANG et al. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, v. 181, p. 659-672, 2018. WANG et al. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: Hydration, mechanical properties and durability. Journal of Cleaner Production, v. 219, p. 763-774, 2019. WEBER et al. Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Materials Characterization, v. 58, n. 11-12, p. 1217-1228, 2007. WILSON, M. J.; WILSON, L.; PATEY, I. . The influence of individual clay minerals on formation damage of reservoir sandstones: a critical review with some new insights. Clay Minerals, v. 49, n. 2, p. 147–164, 2014. WORRELL et al. Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment, v. 26, n. 1, p. 303-329, 2001. YANGUATIN et al. Effect of thermal treatment on pozzolanic activity of excavated waste clays. Construction and Building Materials, v. 211, p. 814-823, 2019. ZHANG et al. Engineered Cementitious Composites (ECC) with limestone calcined clay cement (LC3). Cement and Concrete Composites, v. 114, p. 103766, 2020. ZHOU, Ding. Developing supplementary cementitious materials from waste London clay. Tese de Doutorado (Departamento de Engenharia Civil e Ambiental) - Faculty of Engineering Imperial College London. London, United Kingdom, 2016. ZUNINO, Franco. Limestone calcined clay cements (LC3): raw material processing, sulfate balance and hydration kinetics. Tese de doutorado (Programa de Doutorado em Ciência e Engenharia dos Materiais) - École Polytechnique Fédérale de Lausanne (EPFL), Suíça, 2020. ZUNINO, Franco; BOEHM-COURJAULT, Emmanuelle; SCRIVENER, Karen. The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Materials and Structures, v. 53, p. 1-15, 2020. ZUNINO, Franco; MARTIRENA, Fernando; SCRIVENER, Karen. Limestone Calcined Clay Cements (LC³). ACI Materials Journal, v. 118, n. 3, 2021. ZUNINO, Franco; SCRIVENER, Karen. Increasing the kaolinite content of raw clays using particle classification techniques for use as supplementary cementitious materials. Construction and Building Materials, v. 244, p. 118335, 2020. ZUNINO, Franco; SCRIVENER, Karen. The influence of the filler effect on the sulfate requirement of blended cements. Cement and Concrete Research, v. 126, p. 105918, 2019. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Vale do Rio dos Sinos (Unisinos) Universidade do Vale do Rio dos Sinos (Unisinos) Brasil Programa de Pós-Graduação em Engenharia Civil |
publisher.none.fl_str_mv |
Universidade do Vale do Rio dos Sinos (Unisinos) Universidade do Vale do Rio dos Sinos (Unisinos) Brasil Programa de Pós-Graduação em Engenharia Civil |
dc.source.none.fl_str_mv |
reponame:Repositório Comum do Brasil - Deposita instname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) instacron:IBICT |
instname_str |
Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) |
instacron_str |
IBICT |
institution |
IBICT |
reponame_str |
Repositório Comum do Brasil - Deposita |
collection |
Repositório Comum do Brasil - Deposita |
repository.name.fl_str_mv |
Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict) |
repository.mail.fl_str_mv |
deposita@ibict.br |
_version_ |
1811810875008352256 |