A framework for automation of data recording, modelling, and optimal statistical control of production lines

Detalhes bibliográficos
Autor(a) principal: Leal, Flávio Murilo de Carvalho
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Comum do Brasil - Deposita
Texto Completo: https://deposita.ibict.br/handle/deposita/420
Resumo: Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies has enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.
id IBICT-1_6082e227eee7948ceb9ef0b862888e17
oai_identifier_str oai:https://deposita.ibict.br:deposita/420
network_acronym_str IBICT-1
network_name_str Repositório Comum do Brasil - Deposita
repository_id_str 4658
spelling A framework for automation of data recording, modelling, and optimal statistical control of production linesQuality controlAutomationStatistical modellingEmbedded systemsCiência da ComputaçãoUnarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies has enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.Indiscutivelmente, a automação da coleta de dados e o subsequente tratamento estatístico aumentam a qualidade dos sistemas de gestão industrial. O surgimento de tecnologias digitais acessíveis possibilitou a introdução dos pilares da Indústria 4.0 nas empresas locais do Cariri. Particularmente, tal prática contribui positivamente para o triplo resultado do desenvolvimento sustentável: Pessoas, Meio Ambiente e Economia. O presente trabalho tem como objetivo fornecer um Framework geral automatizado para registro de dados e controle estatístico de esteiras transportadoras em linhas de produção. O software foi desenvolvido em três camadas: interface gráfica do usuário, em linguagem PHP; coleta, pesquisa e proteção de banco de dados em MySQL; estatística computacional, em R; e controle de hardware, em C. As estatísticas computacionais são baseadas na combinação de redes neurais artificiais e modelos autorregressivos integrados e de média móvel, via método de mínima variância. Os componentes de hardware são compostos por hardware open source como placas baseadas em Arduino e sensores modulares ou industriais. Especificamente, o sistema embarcado é projetado para monitorar e registrar constantemente uma série de características mensuráveis das esteiras transportadoras (por exemplo, consumo elétrico e temperatura), por meio de uma série de sensores, permitindo tanto o cálculo de métricas de controle estatístico quanto a avaliação da qualidade do sistema de produção. Como estudo de caso, o projeto utiliza uma linha de produção de calcário laminado, localizada no Centro de Tecnologia Mineral, Nova Olinda, Ceará, Brasil.Universidade Federal do CaririUniversidade Federal do CaririBrasilPrograma de Desenvolvimento Regional Sustentávelhttp://lattes.cnpq.br/8201140317366536Firmino, Paulo Renato AlvesLeal, Flávio Murilo de Carvalho2023-09-05T18:31:22Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://deposita.ibict.br/handle/deposita/420enginfo:eu-repo/semantics/openAccessreponame:Repositório Comum do Brasil - Depositainstname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)instacron:IBICT2023-09-05T18:31:22Zoai:https://deposita.ibict.br:deposita/420Repositório ComumPUBhttp://deposita.ibict.br/oai/requestdeposita@ibict.bropendoar:46582023-09-05T18:31:22Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)false
dc.title.none.fl_str_mv A framework for automation of data recording, modelling, and optimal statistical control of production lines
title A framework for automation of data recording, modelling, and optimal statistical control of production lines
spellingShingle A framework for automation of data recording, modelling, and optimal statistical control of production lines
Leal, Flávio Murilo de Carvalho
Quality control
Automation
Statistical modelling
Embedded systems
Ciência da Computação
title_short A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_full A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_fullStr A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_full_unstemmed A framework for automation of data recording, modelling, and optimal statistical control of production lines
title_sort A framework for automation of data recording, modelling, and optimal statistical control of production lines
author Leal, Flávio Murilo de Carvalho
author_facet Leal, Flávio Murilo de Carvalho
author_role author
dc.contributor.none.fl_str_mv http://lattes.cnpq.br/8201140317366536
Firmino, Paulo Renato Alves
dc.contributor.author.fl_str_mv Leal, Flávio Murilo de Carvalho
dc.subject.por.fl_str_mv Quality control
Automation
Statistical modelling
Embedded systems
Ciência da Computação
topic Quality control
Automation
Statistical modelling
Embedded systems
Ciência da Computação
description Unarguably, the automation of data collection and subsequent statistical treatment enhance the quality of industrial management systems. The rise of accessible digital technologies has enabled the introduction of the Industry 4.0 pillars in Cariri local companies. Particularly, such practice positively contributes to the triple bottom line of sustainable development: People, Environment, and Economy. The present work aims to provide a general automated framework for data recording and statistical control of conveyor belts in production lines. The software has been developed in three layers: graphical user interface, in PHP language; database collection, search, and safeguard, in MySQL; computational statistics, in R; and hardware control, in C. The computational statistics are based on the combination of artificial neural nets and autoregressive integrated and moving average models, via minimal variance method. The hardware components are composed by open source hardware as Arduino based boards and modular or industrial sensors. Specifically, the embedded system is designed to constantly monitor and record a number of measurable characteristics of the conveyor belts (e.g. electric consumption and temperature), via a number of sensors, allowing both the computation of statistical control metrics and the evaluation of the quality of the production system. As a case study, the project makes use of a laminated limestone production line, located at the Mineral Technology Center, Nova Olinda, Ceará state, Brazil.
publishDate 2020
dc.date.none.fl_str_mv 2020
2023-09-05T18:31:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://deposita.ibict.br/handle/deposita/420
url https://deposita.ibict.br/handle/deposita/420
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Cariri
Universidade Federal do Cariri
Brasil
Programa de Desenvolvimento Regional Sustentável
publisher.none.fl_str_mv Universidade Federal do Cariri
Universidade Federal do Cariri
Brasil
Programa de Desenvolvimento Regional Sustentável
dc.source.none.fl_str_mv reponame:Repositório Comum do Brasil - Deposita
instname:Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
instacron:IBICT
instname_str Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
instacron_str IBICT
institution IBICT
reponame_str Repositório Comum do Brasil - Deposita
collection Repositório Comum do Brasil - Deposita
repository.name.fl_str_mv Repositório Comum do Brasil - Deposita - Instituto Brasileiro de Informação em Ciência e Tecnologia (Ibict)
repository.mail.fl_str_mv deposita@ibict.br
_version_ 1811810875024080896