Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista IBRACON de Estruturas e Materiais |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000300590 |
Resumo: | Abstract The objective of this work is to make feasible the use of FEA slag instead of the conventional bulk aggregate in the pervious concrete (PC) production, reaching the minimum parameters required by NBR16416/2015 and ACI 522R-10. This substitution would minimize the use of natural aggregates, besides taking advantage of a residue that has no specific destination. In order to reach the objective, three FEAs with different grain sizes were chosen: 6-10 mm (A), 10-20 mm (B) and finally a mixture of the two previous ones (C) in the proportion 30-70 respectively. In order to evaluate its mechanical behavior, tests of compressive strength and flexural tensile tests were carried out, while the evaluation of the hydraulic behavior, porosity and constant head permeability test were performed. The compressive strength varies from 19-31MPa and 3-4MPa for flexural tensile strength was obtained. In hydraulic terms, the porosity varied from 15-20% and the permeability coefficient was 10-12mm/s. There is also a direct influence of grains of size less than 4.8 mm (small aggregate) on the compressive strength and permeability of PCs. At the end of the results, it was possible to establish a correlation between the compressive strength, the permeability and the percentage of grains inferior to 4.8mm (sand%), being this positive in relation to the studied variables, that is, the mechanical and hydraulics. Therefore, it has been concluded that the total substitution of conventional aggregates by FEA in CoPe manufacturing will comply with the minimum parameters of NBR 16416/2015. |
id |
IBRACON-1_e7f4b673b0b7d1fccd56946aa02e52df |
---|---|
oai_identifier_str |
oai:scielo:S1983-41952019000300590 |
network_acronym_str |
IBRACON-1 |
network_name_str |
Revista IBRACON de Estruturas e Materiais |
repository_id_str |
|
spelling |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic propertiespervious concretepermeabilityporositysustainabilityelectric furnace slagAbstract The objective of this work is to make feasible the use of FEA slag instead of the conventional bulk aggregate in the pervious concrete (PC) production, reaching the minimum parameters required by NBR16416/2015 and ACI 522R-10. This substitution would minimize the use of natural aggregates, besides taking advantage of a residue that has no specific destination. In order to reach the objective, three FEAs with different grain sizes were chosen: 6-10 mm (A), 10-20 mm (B) and finally a mixture of the two previous ones (C) in the proportion 30-70 respectively. In order to evaluate its mechanical behavior, tests of compressive strength and flexural tensile tests were carried out, while the evaluation of the hydraulic behavior, porosity and constant head permeability test were performed. The compressive strength varies from 19-31MPa and 3-4MPa for flexural tensile strength was obtained. In hydraulic terms, the porosity varied from 15-20% and the permeability coefficient was 10-12mm/s. There is also a direct influence of grains of size less than 4.8 mm (small aggregate) on the compressive strength and permeability of PCs. At the end of the results, it was possible to establish a correlation between the compressive strength, the permeability and the percentage of grains inferior to 4.8mm (sand%), being this positive in relation to the studied variables, that is, the mechanical and hydraulics. Therefore, it has been concluded that the total substitution of conventional aggregates by FEA in CoPe manufacturing will comply with the minimum parameters of NBR 16416/2015.IBRACON - Instituto Brasileiro do Concreto2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000300590Revista IBRACON de Estruturas e Materiais v.12 n.3 2019reponame:Revista IBRACON de Estruturas e Materiaisinstname:Instituto Brasileiro do Concreto (IBRACON)instacron:IBRACON10.1590/s1983-41952019000300009info:eu-repo/semantics/openAccessSANDOVAL,G. F. B.GALOBARDES,I.DIAS,C.CAMPOS,A.TORALLES,B. M.eng2019-07-16T00:00:00Zoai:scielo:S1983-41952019000300590Revistahttp://www.revistas.ibracon.org.br/index.php/riemhttps://old.scielo.br/oai/scielo-oai.phpeditores.riem@gmail.com||arlene@ibracon.org.br1983-41951983-4195opendoar:2019-07-16T00:00Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON)false |
dc.title.none.fl_str_mv |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
title |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
spellingShingle |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties SANDOVAL,G. F. B. pervious concrete permeability porosity sustainability electric furnace slag |
title_short |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
title_full |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
title_fullStr |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
title_full_unstemmed |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
title_sort |
Pervious concrete made with electric furnace slag (FEA): mechanical and hydraulic properties |
author |
SANDOVAL,G. F. B. |
author_facet |
SANDOVAL,G. F. B. GALOBARDES,I. DIAS,C. CAMPOS,A. TORALLES,B. M. |
author_role |
author |
author2 |
GALOBARDES,I. DIAS,C. CAMPOS,A. TORALLES,B. M. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
SANDOVAL,G. F. B. GALOBARDES,I. DIAS,C. CAMPOS,A. TORALLES,B. M. |
dc.subject.por.fl_str_mv |
pervious concrete permeability porosity sustainability electric furnace slag |
topic |
pervious concrete permeability porosity sustainability electric furnace slag |
description |
Abstract The objective of this work is to make feasible the use of FEA slag instead of the conventional bulk aggregate in the pervious concrete (PC) production, reaching the minimum parameters required by NBR16416/2015 and ACI 522R-10. This substitution would minimize the use of natural aggregates, besides taking advantage of a residue that has no specific destination. In order to reach the objective, three FEAs with different grain sizes were chosen: 6-10 mm (A), 10-20 mm (B) and finally a mixture of the two previous ones (C) in the proportion 30-70 respectively. In order to evaluate its mechanical behavior, tests of compressive strength and flexural tensile tests were carried out, while the evaluation of the hydraulic behavior, porosity and constant head permeability test were performed. The compressive strength varies from 19-31MPa and 3-4MPa for flexural tensile strength was obtained. In hydraulic terms, the porosity varied from 15-20% and the permeability coefficient was 10-12mm/s. There is also a direct influence of grains of size less than 4.8 mm (small aggregate) on the compressive strength and permeability of PCs. At the end of the results, it was possible to establish a correlation between the compressive strength, the permeability and the percentage of grains inferior to 4.8mm (sand%), being this positive in relation to the studied variables, that is, the mechanical and hydraulics. Therefore, it has been concluded that the total substitution of conventional aggregates by FEA in CoPe manufacturing will comply with the minimum parameters of NBR 16416/2015. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000300590 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1983-41952019000300590 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1983-41952019000300009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
publisher.none.fl_str_mv |
IBRACON - Instituto Brasileiro do Concreto |
dc.source.none.fl_str_mv |
Revista IBRACON de Estruturas e Materiais v.12 n.3 2019 reponame:Revista IBRACON de Estruturas e Materiais instname:Instituto Brasileiro do Concreto (IBRACON) instacron:IBRACON |
instname_str |
Instituto Brasileiro do Concreto (IBRACON) |
instacron_str |
IBRACON |
institution |
IBRACON |
reponame_str |
Revista IBRACON de Estruturas e Materiais |
collection |
Revista IBRACON de Estruturas e Materiais |
repository.name.fl_str_mv |
Revista IBRACON de Estruturas e Materiais - Instituto Brasileiro do Concreto (IBRACON) |
repository.mail.fl_str_mv |
editores.riem@gmail.com||arlene@ibracon.org.br |
_version_ |
1754193605651595264 |