Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Digital do Instituto Evandro Chagas (Patuá) |
Texto Completo: | https://patua.iec.gov.br/handle/iec/3713 |
Resumo: | Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus. |
id |
IEC-2_5ea0a6e0c2772219614466c5a1496d67 |
---|---|
oai_identifier_str |
oai:patua.iec.gov.br:iec/3713 |
network_acronym_str |
IEC-2 |
network_name_str |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
repository_id_str |
|
spelling |
Gomes, Giovanni FreitasPeixoto, Railana Deise da FonsecaMaciel, Brenda GonçalvesSantos, Kedma Farias dosBayma, Lohrane RosaFeitoza Neto, Pedro AlvesFernandes, Taiany NogueiraAbreu, Cintya Castro deCasseb, Samir Mansour MoraesLima, Camila Mendes deOliveira, Marcus Augusto deDiniz, Daniel GuerreiroVasconcelos, Pedro Fernando da CostaSosthenes, Marcia Consentino KronkaDiniz, Cristovam Wanderley Picanço2019-05-22T18:12:29Z2019-05-22T18:12:29Z2019GOMES, Giovanni Freitas et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection. Journal of Histochemistry and Cytochemistry, v. 67, n. 6, p. 419-439, June 2019. DOI: https://doi.org/10.1369/0022155419835218. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542148/pdf/10.1369_0022155419835218.pdf.1551-5044https://patua.iec.gov.br/handle/iec/371310.1369/0022155419835218Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.This study was supported by CAPES (PróAmazônia Process 3311/2013) and had research funds from the Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) and the Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESP/UFPA)Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.engSAGE PublicationsDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMuridae / anatomia & histologiaMicroglia / citologiaVírus da Dengue / patogenicidadeCitocinasCarga Viralinfo:eu-repo/semantics/openAccessreponame:Repositório Digital do Instituto Evandro Chagas (Patuá)instname:Instituto Evandro Chagas (IEC)instacron:IECLICENSElicense.txtlicense.txttext/plain; charset=utf-82182https://patua.iec.gov.br/bitstreams/6a45e202-4108-4883-99f7-d2ff4b2b189f/download11832eea31b16df8613079d742d61793MD52TEXTDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.txtDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.txtExtracted texttext/plain81864https://patua.iec.gov.br/bitstreams/97706043-8f81-448b-be47-7f1a8aca17d0/downloadac0f85e1e85485ee1c187c78cf231fd1MD56THUMBNAILDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.jpgDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.jpgGenerated Thumbnailimage/jpeg6932https://patua.iec.gov.br/bitstreams/3464ddfe-d92f-43ac-afbd-ddbc3241f4db/download0f779a5ed4861921c5b4b40ee78cd389MD57ORIGINALDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdfDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdfapplication/pdf2263448https://patua.iec.gov.br/bitstreams/dfc9a315-5c15-489a-9590-25e7e51f4186/download820f38864fd32e194c9a5dec9c8360fdMD55iec/37132022-10-20 22:25:16.252oai:patua.iec.gov.br:iec/3713https://patua.iec.gov.brRepositório InstitucionalPUBhttps://patua.iec.gov.br/oai/requestclariceneta@iec.gov.br || Biblioteca@iec.gov.bropendoar:2022-10-20T22:25:16Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC)falsePGI+TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmE8L2I+DQoNClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUGF0dcOhIGRldmUgY29uY2VkZXIgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIHVtYSBMaWNlbsOnYSBkZSBEaXN0cmlidWnDp8OjbyBOw6NvIEV4Y2x1c2l2YSBwYXJhIHRvcm5hciBlIG1hbnRlciBhY2Vzc8OtdmVpcyBvcyBzZXVzIGRvY3VtZW50b3MgZW0gZm9ybWF0byBkaWdpdGFsLiANCg0KQ29tIGEgY29uY2Vzc8OjbyBkZXNzYSBsaWNlbsOnYSBuw6NvIGV4Y2x1c2l2YSwgbyBkZXBvc2l0YW50ZSBjb250aW51YSBhIHJldGVyIHRvZG9zIG9zIGRpcmVpdG9zIGRlIGF1dG9yLg0KDQpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSB2b2PDqiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzKQ0KDQphKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRlIHNldSBkb2N1bWVudG8uDQoNCmIpIENvbmNlZGUgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIG8gZGlyZWl0byBuw6NvIGV4Y2x1c2l2byBkZSBhcnF1aXZhciwgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGEgc2VndWlyKSwgY29tdW5pY2FyIGUvb3UgZGlzdHJpYnVpciBubyA8Yj5QYXR1w6E8L2I+LCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIHF1YWxxdWVyIG91dHJvIG1laW8uDQoNCmMpIERlY2xhcmEgcXVlIGF1dG9yaXphIG8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIGEgYXJxdWl2YXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3NlIGRvY3VtZW50byBlIGNvbnZlcnTDqi1sbywgc2VtIGFsdGVyYXIgbyBzZXUgY29udGXDumRvLCBwYXJhIHF1YWxxdWVyIGZvcm1hdG8gZGUgZmljaGVpcm8sIG1laW8gb3Ugc3Vwb3J0ZSwgcGFyYSBlZmVpdG9zIGRlIHNlZ3VyYW7Dp2EsIHByZXNlcnZhw6fDo28gKGJhY2t1cCkgZSBhY2Vzc28uDQoNCmQpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIHN1Ym1ldGlkbyDDqSBvIHNldSB0cmFiYWxobyBvcmlnaW5hbCBlIHF1ZSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIGEgdGVyY2Vpcm9zIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuDQoNCmUpIERlY2xhcmEgcXVlLCBubyBjYXNvIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gY29udGVyIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIG9idGV2ZSBhIGF1dG9yaXphw6fDo28gaXJyZXN0cml0YSBkbyByZXNwZWN0aXZvIGRldGVudG9yIGRlc3NlcyBkaXJlaXRvcywgcGFyYSBjZWRlciBhbyBJbnN0aXR1dG8gRXZhbmRybyBDaGFnYXMgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBMaWNlbsOnYSBlIGF1dG9yaXphciBhIHV0aWxpesOhLWxvcyBsZWdhbG1lbnRlLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLg0KDQpmKSBTRSBPIERPQ1VNRU5UTyBFTlRSRUdVRSBGT1IgQkFTRUFETyBFTSBUUkFCQUxITyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIE9VVFJBIElOU1RJVFVJw4fDg08gUVVFIE7Dg08gTyBJTlNUSVRVVE8gRVZBTkRSTyBDSEFHQVMsIERFQ0xBUkEgUVVFIENVTVBSSVUgUVVBSVNRVUVSIE9CUklHQcOHw5VFUyBFWElHSURBUyBQRUxPIFJFU1BFQ1RJVk8gQ09OVFJBVE8gT1UgQUNPUkRPLg0KDQpPIEluc3RpdHV0byBFdmFuZHJvIENoYWdhcyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkbyBwcmV2aXN0byBuYSBhbMOtbmVhIGIpLg== |
dc.title.pt_BR.fl_str_mv |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
title |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
spellingShingle |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection Gomes, Giovanni Freitas Muridae / anatomia & histologia Microglia / citologia Vírus da Dengue / patogenicidade Citocinas Carga Viral |
title_short |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
title_full |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
title_fullStr |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
title_full_unstemmed |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
title_sort |
Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection |
author |
Gomes, Giovanni Freitas |
author_facet |
Gomes, Giovanni Freitas Peixoto, Railana Deise da Fonseca Maciel, Brenda Gonçalves Santos, Kedma Farias dos Bayma, Lohrane Rosa Feitoza Neto, Pedro Alves Fernandes, Taiany Nogueira Abreu, Cintya Castro de Casseb, Samir Mansour Moraes Lima, Camila Mendes de Oliveira, Marcus Augusto de Diniz, Daniel Guerreiro Vasconcelos, Pedro Fernando da Costa Sosthenes, Marcia Consentino Kronka Diniz, Cristovam Wanderley Picanço |
author_role |
author |
author2 |
Peixoto, Railana Deise da Fonseca Maciel, Brenda Gonçalves Santos, Kedma Farias dos Bayma, Lohrane Rosa Feitoza Neto, Pedro Alves Fernandes, Taiany Nogueira Abreu, Cintya Castro de Casseb, Samir Mansour Moraes Lima, Camila Mendes de Oliveira, Marcus Augusto de Diniz, Daniel Guerreiro Vasconcelos, Pedro Fernando da Costa Sosthenes, Marcia Consentino Kronka Diniz, Cristovam Wanderley Picanço |
author2_role |
author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Gomes, Giovanni Freitas Peixoto, Railana Deise da Fonseca Maciel, Brenda Gonçalves Santos, Kedma Farias dos Bayma, Lohrane Rosa Feitoza Neto, Pedro Alves Fernandes, Taiany Nogueira Abreu, Cintya Castro de Casseb, Samir Mansour Moraes Lima, Camila Mendes de Oliveira, Marcus Augusto de Diniz, Daniel Guerreiro Vasconcelos, Pedro Fernando da Costa Sosthenes, Marcia Consentino Kronka Diniz, Cristovam Wanderley Picanço |
dc.subject.decsPrimary.pt_BR.fl_str_mv |
Muridae / anatomia & histologia Microglia / citologia Vírus da Dengue / patogenicidade Citocinas Carga Viral |
topic |
Muridae / anatomia & histologia Microglia / citologia Vírus da Dengue / patogenicidade Citocinas Carga Viral |
description |
Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-05-22T18:12:29Z |
dc.date.available.fl_str_mv |
2019-05-22T18:12:29Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GOMES, Giovanni Freitas et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection. Journal of Histochemistry and Cytochemistry, v. 67, n. 6, p. 419-439, June 2019. DOI: https://doi.org/10.1369/0022155419835218. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542148/pdf/10.1369_0022155419835218.pdf. |
dc.identifier.uri.fl_str_mv |
https://patua.iec.gov.br/handle/iec/3713 |
dc.identifier.issn.-.fl_str_mv |
1551-5044 |
dc.identifier.doi.pt_BR.fl_str_mv |
10.1369/0022155419835218 |
identifier_str_mv |
GOMES, Giovanni Freitas et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection. Journal of Histochemistry and Cytochemistry, v. 67, n. 6, p. 419-439, June 2019. DOI: https://doi.org/10.1369/0022155419835218. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542148/pdf/10.1369_0022155419835218.pdf. 1551-5044 10.1369/0022155419835218 |
url |
https://patua.iec.gov.br/handle/iec/3713 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
SAGE Publications |
publisher.none.fl_str_mv |
SAGE Publications |
dc.source.none.fl_str_mv |
reponame:Repositório Digital do Instituto Evandro Chagas (Patuá) instname:Instituto Evandro Chagas (IEC) instacron:IEC |
instname_str |
Instituto Evandro Chagas (IEC) |
instacron_str |
IEC |
institution |
IEC |
reponame_str |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
collection |
Repositório Digital do Instituto Evandro Chagas (Patuá) |
bitstream.url.fl_str_mv |
https://patua.iec.gov.br/bitstreams/6a45e202-4108-4883-99f7-d2ff4b2b189f/download https://patua.iec.gov.br/bitstreams/97706043-8f81-448b-be47-7f1a8aca17d0/download https://patua.iec.gov.br/bitstreams/3464ddfe-d92f-43ac-afbd-ddbc3241f4db/download https://patua.iec.gov.br/bitstreams/dfc9a315-5c15-489a-9590-25e7e51f4186/download |
bitstream.checksum.fl_str_mv |
11832eea31b16df8613079d742d61793 ac0f85e1e85485ee1c187c78cf231fd1 0f779a5ed4861921c5b4b40ee78cd389 820f38864fd32e194c9a5dec9c8360fd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC) |
repository.mail.fl_str_mv |
clariceneta@iec.gov.br || Biblioteca@iec.gov.br |
_version_ |
1809190047411339264 |