Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection

Detalhes bibliográficos
Autor(a) principal: Gomes, Giovanni Freitas
Data de Publicação: 2019
Outros Autores: Peixoto, Railana Deise da Fonseca, Maciel, Brenda Gonçalves, Santos, Kedma Farias dos, Bayma, Lohrane Rosa, Feitoza Neto, Pedro Alves, Fernandes, Taiany Nogueira, Abreu, Cintya Castro de, Casseb, Samir Mansour Moraes, Lima, Camila Mendes de, Oliveira, Marcus Augusto de, Diniz, Daniel Guerreiro, Vasconcelos, Pedro Fernando da Costa, Sosthenes, Marcia Consentino Kronka, Diniz, Cristovam Wanderley Picanço
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Digital do Instituto Evandro Chagas (Patuá)
Texto Completo: https://patua.iec.gov.br/handle/iec/3713
Resumo: Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
id IEC-2_5ea0a6e0c2772219614466c5a1496d67
oai_identifier_str oai:patua.iec.gov.br:iec/3713
network_acronym_str IEC-2
network_name_str Repositório Digital do Instituto Evandro Chagas (Patuá)
repository_id_str
spelling Gomes, Giovanni FreitasPeixoto, Railana Deise da FonsecaMaciel, Brenda GonçalvesSantos, Kedma Farias dosBayma, Lohrane RosaFeitoza Neto, Pedro AlvesFernandes, Taiany NogueiraAbreu, Cintya Castro deCasseb, Samir Mansour MoraesLima, Camila Mendes deOliveira, Marcus Augusto deDiniz, Daniel GuerreiroVasconcelos, Pedro Fernando da CostaSosthenes, Marcia Consentino KronkaDiniz, Cristovam Wanderley Picanço2019-05-22T18:12:29Z2019-05-22T18:12:29Z2019GOMES, Giovanni Freitas et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection. Journal of Histochemistry and Cytochemistry, v. 67, n. 6, p. 419-439, June 2019. DOI: https://doi.org/10.1369/0022155419835218. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542148/pdf/10.1369_0022155419835218.pdf.1551-5044https://patua.iec.gov.br/handle/iec/371310.1369/0022155419835218Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.This study was supported by CAPES (PróAmazônia Process 3311/2013) and had research funds from the Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) and the Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESP/UFPA)Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.engSAGE PublicationsDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleMuridae / anatomia & histologiaMicroglia / citologiaVírus da Dengue / patogenicidadeCitocinasCarga Viralinfo:eu-repo/semantics/openAccessreponame:Repositório Digital do Instituto Evandro Chagas (Patuá)instname:Instituto Evandro Chagas (IEC)instacron:IECLICENSElicense.txtlicense.txttext/plain; charset=utf-82182https://patua.iec.gov.br/bitstreams/6a45e202-4108-4883-99f7-d2ff4b2b189f/download11832eea31b16df8613079d742d61793MD52TEXTDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.txtDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.txtExtracted texttext/plain81864https://patua.iec.gov.br/bitstreams/97706043-8f81-448b-be47-7f1a8aca17d0/downloadac0f85e1e85485ee1c187c78cf231fd1MD56THUMBNAILDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.jpgDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdf.jpgGenerated Thumbnailimage/jpeg6932https://patua.iec.gov.br/bitstreams/3464ddfe-d92f-43ac-afbd-ddbc3241f4db/download0f779a5ed4861921c5b4b40ee78cd389MD57ORIGINALDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdfDifferential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection.pdfapplication/pdf2263448https://patua.iec.gov.br/bitstreams/dfc9a315-5c15-489a-9590-25e7e51f4186/download820f38864fd32e194c9a5dec9c8360fdMD55iec/37132022-10-20 22:25:16.252oai:patua.iec.gov.br:iec/3713https://patua.iec.gov.brRepositório InstitucionalPUBhttps://patua.iec.gov.br/oai/requestclariceneta@iec.gov.br || Biblioteca@iec.gov.bropendoar:2022-10-20T22:25:16Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC)falsePGI+TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmE8L2I+DQoNClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUGF0dcOhIGRldmUgY29uY2VkZXIgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIHVtYSBMaWNlbsOnYSBkZSBEaXN0cmlidWnDp8OjbyBOw6NvIEV4Y2x1c2l2YSBwYXJhIHRvcm5hciBlIG1hbnRlciBhY2Vzc8OtdmVpcyBvcyBzZXVzIGRvY3VtZW50b3MgZW0gZm9ybWF0byBkaWdpdGFsLiANCg0KQ29tIGEgY29uY2Vzc8OjbyBkZXNzYSBsaWNlbsOnYSBuw6NvIGV4Y2x1c2l2YSwgbyBkZXBvc2l0YW50ZSBjb250aW51YSBhIHJldGVyIHRvZG9zIG9zIGRpcmVpdG9zIGRlIGF1dG9yLg0KDQpBbyBhc3NpbmFyIGUgZW50cmVnYXIgZXN0YSBsaWNlbsOnYSB2b2PDqiAoYXV0b3Igb3UgZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzKQ0KDQphKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRlIHNldSBkb2N1bWVudG8uDQoNCmIpIENvbmNlZGUgYW8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIG8gZGlyZWl0byBuw6NvIGV4Y2x1c2l2byBkZSBhcnF1aXZhciwgcmVwcm9kdXppciwgY29udmVydGVyIChjb21vIGRlZmluaWRvIGEgc2VndWlyKSwgY29tdW5pY2FyIGUvb3UgZGlzdHJpYnVpciBubyA8Yj5QYXR1w6E8L2I+LCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIHF1YWxxdWVyIG91dHJvIG1laW8uDQoNCmMpIERlY2xhcmEgcXVlIGF1dG9yaXphIG8gSW5zdGl0dXRvIEV2YW5kcm8gQ2hhZ2FzIGEgYXJxdWl2YXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3NlIGRvY3VtZW50byBlIGNvbnZlcnTDqi1sbywgc2VtIGFsdGVyYXIgbyBzZXUgY29udGXDumRvLCBwYXJhIHF1YWxxdWVyIGZvcm1hdG8gZGUgZmljaGVpcm8sIG1laW8gb3Ugc3Vwb3J0ZSwgcGFyYSBlZmVpdG9zIGRlIHNlZ3VyYW7Dp2EsIHByZXNlcnZhw6fDo28gKGJhY2t1cCkgZSBhY2Vzc28uDQoNCmQpIERlY2xhcmEgcXVlIG8gZG9jdW1lbnRvIHN1Ym1ldGlkbyDDqSBvIHNldSB0cmFiYWxobyBvcmlnaW5hbCBlIHF1ZSBkZXTDqW0gbyBkaXJlaXRvIGRlIGNvbmNlZGVyIGEgdGVyY2Vpcm9zIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGEgZW50cmVnYSBkbyBkb2N1bWVudG8gbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBkZSBxdWFscXVlciBvdXRyYSBwZXNzb2Egb3UgZW50aWRhZGUuDQoNCmUpIERlY2xhcmEgcXVlLCBubyBjYXNvIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gY29udGVyIG1hdGVyaWFsIGRvIHF1YWwgbsOjbyBkZXTDqW0gb3MgZGlyZWl0b3MgZGUgYXV0b3IsIG9idGV2ZSBhIGF1dG9yaXphw6fDo28gaXJyZXN0cml0YSBkbyByZXNwZWN0aXZvIGRldGVudG9yIGRlc3NlcyBkaXJlaXRvcywgcGFyYSBjZWRlciBhbyBJbnN0aXR1dG8gRXZhbmRybyBDaGFnYXMgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBMaWNlbsOnYSBlIGF1dG9yaXphciBhIHV0aWxpesOhLWxvcyBsZWdhbG1lbnRlLiBEZWNsYXJhIHRhbWLDqW0gcXVlIGVzc2UgbWF0ZXJpYWwgY3Vqb3MgZGlyZWl0b3Mgc8OjbyBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZG8gZG9jdW1lbnRvIGVudHJlZ3VlLg0KDQpmKSBTRSBPIERPQ1VNRU5UTyBFTlRSRUdVRSBGT1IgQkFTRUFETyBFTSBUUkFCQUxITyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIE9VVFJBIElOU1RJVFVJw4fDg08gUVVFIE7Dg08gTyBJTlNUSVRVVE8gRVZBTkRSTyBDSEFHQVMsIERFQ0xBUkEgUVVFIENVTVBSSVUgUVVBSVNRVUVSIE9CUklHQcOHw5VFUyBFWElHSURBUyBQRUxPIFJFU1BFQ1RJVk8gQ09OVFJBVE8gT1UgQUNPUkRPLg0KDQpPIEluc3RpdHV0byBFdmFuZHJvIENoYWdhcyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yKGVzKSBkb3MgZGlyZWl0b3MgZG8gZG9jdW1lbnRvIGVudHJlZ3VlIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkbyBwcmV2aXN0byBuYSBhbMOtbmVhIGIpLg==
dc.title.pt_BR.fl_str_mv Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
title Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
spellingShingle Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
Gomes, Giovanni Freitas
Muridae / anatomia & histologia
Microglia / citologia
Vírus da Dengue / patogenicidade
Citocinas
Carga Viral
title_short Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
title_full Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
title_fullStr Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
title_full_unstemmed Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
title_sort Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection
author Gomes, Giovanni Freitas
author_facet Gomes, Giovanni Freitas
Peixoto, Railana Deise da Fonseca
Maciel, Brenda Gonçalves
Santos, Kedma Farias dos
Bayma, Lohrane Rosa
Feitoza Neto, Pedro Alves
Fernandes, Taiany Nogueira
Abreu, Cintya Castro de
Casseb, Samir Mansour Moraes
Lima, Camila Mendes de
Oliveira, Marcus Augusto de
Diniz, Daniel Guerreiro
Vasconcelos, Pedro Fernando da Costa
Sosthenes, Marcia Consentino Kronka
Diniz, Cristovam Wanderley Picanço
author_role author
author2 Peixoto, Railana Deise da Fonseca
Maciel, Brenda Gonçalves
Santos, Kedma Farias dos
Bayma, Lohrane Rosa
Feitoza Neto, Pedro Alves
Fernandes, Taiany Nogueira
Abreu, Cintya Castro de
Casseb, Samir Mansour Moraes
Lima, Camila Mendes de
Oliveira, Marcus Augusto de
Diniz, Daniel Guerreiro
Vasconcelos, Pedro Fernando da Costa
Sosthenes, Marcia Consentino Kronka
Diniz, Cristovam Wanderley Picanço
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gomes, Giovanni Freitas
Peixoto, Railana Deise da Fonseca
Maciel, Brenda Gonçalves
Santos, Kedma Farias dos
Bayma, Lohrane Rosa
Feitoza Neto, Pedro Alves
Fernandes, Taiany Nogueira
Abreu, Cintya Castro de
Casseb, Samir Mansour Moraes
Lima, Camila Mendes de
Oliveira, Marcus Augusto de
Diniz, Daniel Guerreiro
Vasconcelos, Pedro Fernando da Costa
Sosthenes, Marcia Consentino Kronka
Diniz, Cristovam Wanderley Picanço
dc.subject.decsPrimary.pt_BR.fl_str_mv Muridae / anatomia & histologia
Microglia / citologia
Vírus da Dengue / patogenicidade
Citocinas
Carga Viral
topic Muridae / anatomia & histologia
Microglia / citologia
Vírus da Dengue / patogenicidade
Citocinas
Carga Viral
description Peripheral inflammatory stimuli increase proinflammatory cytokines in the bloodstream and central nervous system and activate microglial cells. Here we tested the hypothesis that contrasting environments mimicking sedentary and active lives would be associated with differential microglial morphological responses, inflammatory cytokines concentration, and virus load in the peripheral blood. For this, mice were maintained either in standard (standard environment) or enriched cages (enriched environment) and then subjected to a single (DENV1) serotype infection. Blood samples from infected animals showed higher viral loads and higher tumor necrosis factor-α (TNFα) mRNA concentrations than control subjects. Using an unbiased stereological sampling approach, we selected 544 microglia from lateral septum for microscopic 3D reconstruction. Morphological complexity contributed most to cluster formation. Infected groups exhibited significant increase in the microglia morphological complexity and number, despite the absence of dengue virus antigens in the brain. Two microglial phenotypes (type I with lower and type II with higher morphological complexity) were found in both infected and control groups. However, microglia from infected mice maintained in enriched environment showed only one morphological phenotype. Two-way ANOVA revealed that environmental changes and infection influenced type-I and II microglial morphologies and number. Environmental enrichment and infection interactions may contribute to microglial morphological change to a point that type-I and II morphological phenotypes could no longer be distinguished in infected mice from enriched environment. Significant linear correlation was found between morphological complexity and TNFα peripheral blood. Our findings demonstrated that sedentary-like and active murine models exhibited differential microglial responses and peripheral inflammation to systemic non-neurotropic infections with DENV1 virus.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-22T18:12:29Z
dc.date.available.fl_str_mv 2019-05-22T18:12:29Z
dc.date.issued.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv GOMES, Giovanni Freitas et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection. Journal of Histochemistry and Cytochemistry, v. 67, n. 6, p. 419-439, June 2019. DOI: https://doi.org/10.1369/0022155419835218. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542148/pdf/10.1369_0022155419835218.pdf.
dc.identifier.uri.fl_str_mv https://patua.iec.gov.br/handle/iec/3713
dc.identifier.issn.-.fl_str_mv 1551-5044
dc.identifier.doi.pt_BR.fl_str_mv 10.1369/0022155419835218
identifier_str_mv GOMES, Giovanni Freitas et al. Differential microglial morphological response, TNFα, and viral load in sedentary-like and active murine models after systemic non-neurotropic Dengue Virus infection. Journal of Histochemistry and Cytochemistry, v. 67, n. 6, p. 419-439, June 2019. DOI: https://doi.org/10.1369/0022155419835218. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6542148/pdf/10.1369_0022155419835218.pdf.
1551-5044
10.1369/0022155419835218
url https://patua.iec.gov.br/handle/iec/3713
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv SAGE Publications
publisher.none.fl_str_mv SAGE Publications
dc.source.none.fl_str_mv reponame:Repositório Digital do Instituto Evandro Chagas (Patuá)
instname:Instituto Evandro Chagas (IEC)
instacron:IEC
instname_str Instituto Evandro Chagas (IEC)
instacron_str IEC
institution IEC
reponame_str Repositório Digital do Instituto Evandro Chagas (Patuá)
collection Repositório Digital do Instituto Evandro Chagas (Patuá)
bitstream.url.fl_str_mv https://patua.iec.gov.br/bitstreams/6a45e202-4108-4883-99f7-d2ff4b2b189f/download
https://patua.iec.gov.br/bitstreams/97706043-8f81-448b-be47-7f1a8aca17d0/download
https://patua.iec.gov.br/bitstreams/3464ddfe-d92f-43ac-afbd-ddbc3241f4db/download
https://patua.iec.gov.br/bitstreams/dfc9a315-5c15-489a-9590-25e7e51f4186/download
bitstream.checksum.fl_str_mv 11832eea31b16df8613079d742d61793
ac0f85e1e85485ee1c187c78cf231fd1
0f779a5ed4861921c5b4b40ee78cd389
820f38864fd32e194c9a5dec9c8360fd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Digital do Instituto Evandro Chagas (Patuá) - Instituto Evandro Chagas (IEC)
repository.mail.fl_str_mv clariceneta@iec.gov.br || Biblioteca@iec.gov.br
_version_ 1809190047411339264