The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures

Detalhes bibliográficos
Autor(a) principal: Carvalheira, Luciana
Data de Publicação: 2017
Outros Autores: Instituto de Engenharia Nuclear
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional do IEN
Texto Completo: http://carpedien.ien.gov.br:8080/handle/ien/2320
Resumo: Vascular embolization is an important clinical procedure, frequently used to reduce the size of a tumor, to facilitate the removal of a tumor during surgery or to define a treatment of tumor malformation. In addition, imaging is an important component for the evaluation and care of patients undergoing vascular embolization. Nowadays, during the embolization procedure, the radiologist uses the Angiography or Fluoroscopy (X-Ray images) technique to estimate devascularization, since only pathological examinations are able to show the exact location of the blockade and microspheres. SPECT imaging is widely used in Brazil and provides images of superior quality to the mentioned techniques. Therefore, radioactive polymeric microspheres can be used as radioembolization agents for SPECT imaging. This technique can improve the resolution of images and, consequently, the embolization procedure efficacy of uterine fibroids for example, by allowing the track of particles distribution in the veins and tumor, the homogeneity of this distribution and the end of the embolization procedure. In this work, we evaluate the copolymerization of 4-vinylphenol and vinyl acetate as a synthesis route for a new radioembolization agent. GPC analysis results showed that this comonomer presence improved the molar mass distribution. In addition, bulk polymerization tests and kinetic studies showed that the selected comonomer retards the reaction time, but does not decrease the conversion percentage. Indeed, this result points out the necessity of a comonomer chemical modification to improve yield results.
id IEN_2fe9f54a434b18bb87d27e60f011beeb
oai_identifier_str oai:carpedien.ien.gov.br:ien/2320
network_acronym_str IEN
network_name_str Repositório Institucional do IEN
spelling Carvalheira, LucianaInstituto de Engenharia Nuclear2018-05-15T17:37:45Z2018-05-15T17:37:45Z2017-10http://carpedien.ien.gov.br:8080/handle/ien/2320Submitted by Marcele Costal de Castro (costalcastro@gmail.com) on 2018-05-15T17:37:45Z No. of bitstreams: 1 ARTIGO INAC 41.pdf: 794968 bytes, checksum: 9023da032f89c242f0391bab2557d872 (MD5)Made available in DSpace on 2018-05-15T17:37:45Z (GMT). No. of bitstreams: 1 ARTIGO INAC 41.pdf: 794968 bytes, checksum: 9023da032f89c242f0391bab2557d872 (MD5) Previous issue date: 2017-10Vascular embolization is an important clinical procedure, frequently used to reduce the size of a tumor, to facilitate the removal of a tumor during surgery or to define a treatment of tumor malformation. In addition, imaging is an important component for the evaluation and care of patients undergoing vascular embolization. Nowadays, during the embolization procedure, the radiologist uses the Angiography or Fluoroscopy (X-Ray images) technique to estimate devascularization, since only pathological examinations are able to show the exact location of the blockade and microspheres. SPECT imaging is widely used in Brazil and provides images of superior quality to the mentioned techniques. Therefore, radioactive polymeric microspheres can be used as radioembolization agents for SPECT imaging. This technique can improve the resolution of images and, consequently, the embolization procedure efficacy of uterine fibroids for example, by allowing the track of particles distribution in the veins and tumor, the homogeneity of this distribution and the end of the embolization procedure. In this work, we evaluate the copolymerization of 4-vinylphenol and vinyl acetate as a synthesis route for a new radioembolization agent. GPC analysis results showed that this comonomer presence improved the molar mass distribution. In addition, bulk polymerization tests and kinetic studies showed that the selected comonomer retards the reaction time, but does not decrease the conversion percentage. Indeed, this result points out the necessity of a comonomer chemical modification to improve yield results.engInstituto de Engenharia NuclearIENBrasilRadioactive polimeric microspheresEmbolization procedureNuclear medicineThe synthesis of radioactive polymeric microspheres for spect imaging during embolization proceduresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectXIII ENANinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do IENinstname:Instituto de Engenharia Nuclearinstacron:IENLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2320/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALARTIGO INAC 41.pdfARTIGO INAC 41.pdfapplication/pdf794968http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2320/1/ARTIGO+INAC+41.pdf9023da032f89c242f0391bab2557d872MD51ien/2320oai:carpedien.ien.gov.br:ien/23202018-05-15 14:37:45.919Dspace IENlsales@ien.gov.brTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
title The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
spellingShingle The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
Carvalheira, Luciana
Radioactive polimeric microspheres
Embolization procedure
Nuclear medicine
title_short The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
title_full The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
title_fullStr The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
title_full_unstemmed The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
title_sort The synthesis of radioactive polymeric microspheres for spect imaging during embolization procedures
author Carvalheira, Luciana
author_facet Carvalheira, Luciana
Instituto de Engenharia Nuclear
author_role author
author2 Instituto de Engenharia Nuclear
author2_role author
dc.contributor.author.fl_str_mv Carvalheira, Luciana
Instituto de Engenharia Nuclear
dc.subject.por.fl_str_mv Radioactive polimeric microspheres
Embolization procedure
Nuclear medicine
topic Radioactive polimeric microspheres
Embolization procedure
Nuclear medicine
dc.description.abstract.por.fl_txt_mv Vascular embolization is an important clinical procedure, frequently used to reduce the size of a tumor, to facilitate the removal of a tumor during surgery or to define a treatment of tumor malformation. In addition, imaging is an important component for the evaluation and care of patients undergoing vascular embolization. Nowadays, during the embolization procedure, the radiologist uses the Angiography or Fluoroscopy (X-Ray images) technique to estimate devascularization, since only pathological examinations are able to show the exact location of the blockade and microspheres. SPECT imaging is widely used in Brazil and provides images of superior quality to the mentioned techniques. Therefore, radioactive polymeric microspheres can be used as radioembolization agents for SPECT imaging. This technique can improve the resolution of images and, consequently, the embolization procedure efficacy of uterine fibroids for example, by allowing the track of particles distribution in the veins and tumor, the homogeneity of this distribution and the end of the embolization procedure. In this work, we evaluate the copolymerization of 4-vinylphenol and vinyl acetate as a synthesis route for a new radioembolization agent. GPC analysis results showed that this comonomer presence improved the molar mass distribution. In addition, bulk polymerization tests and kinetic studies showed that the selected comonomer retards the reaction time, but does not decrease the conversion percentage. Indeed, this result points out the necessity of a comonomer chemical modification to improve yield results.
description Vascular embolization is an important clinical procedure, frequently used to reduce the size of a tumor, to facilitate the removal of a tumor during surgery or to define a treatment of tumor malformation. In addition, imaging is an important component for the evaluation and care of patients undergoing vascular embolization. Nowadays, during the embolization procedure, the radiologist uses the Angiography or Fluoroscopy (X-Ray images) technique to estimate devascularization, since only pathological examinations are able to show the exact location of the blockade and microspheres. SPECT imaging is widely used in Brazil and provides images of superior quality to the mentioned techniques. Therefore, radioactive polymeric microspheres can be used as radioembolization agents for SPECT imaging. This technique can improve the resolution of images and, consequently, the embolization procedure efficacy of uterine fibroids for example, by allowing the track of particles distribution in the veins and tumor, the homogeneity of this distribution and the end of the embolization procedure. In this work, we evaluate the copolymerization of 4-vinylphenol and vinyl acetate as a synthesis route for a new radioembolization agent. GPC analysis results showed that this comonomer presence improved the molar mass distribution. In addition, bulk polymerization tests and kinetic studies showed that the selected comonomer retards the reaction time, but does not decrease the conversion percentage. Indeed, this result points out the necessity of a comonomer chemical modification to improve yield results.
publishDate 2017
dc.date.issued.fl_str_mv 2017-10
dc.date.accessioned.fl_str_mv 2018-05-15T17:37:45Z
dc.date.available.fl_str_mv 2018-05-15T17:37:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
status_str publishedVersion
format conferenceObject
dc.identifier.uri.fl_str_mv http://carpedien.ien.gov.br:8080/handle/ien/2320
url http://carpedien.ien.gov.br:8080/handle/ien/2320
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.publisher.initials.fl_str_mv IEN
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Instituto de Engenharia Nuclear
dc.source.none.fl_str_mv reponame:Repositório Institucional do IEN
instname:Instituto de Engenharia Nuclear
instacron:IEN
reponame_str Repositório Institucional do IEN
collection Repositório Institucional do IEN
instname_str Instituto de Engenharia Nuclear
instacron_str IEN
institution IEN
bitstream.url.fl_str_mv http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2320/2/license.txt
http://carpedien.ien.gov.br:8080/xmlui/bitstream/ien/2320/1/ARTIGO+INAC+41.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
9023da032f89c242f0391bab2557d872
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Dspace IEN
repository.mail.fl_str_mv lsales@ien.gov.br
_version_ 1656026992755081216