SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING

Detalhes bibliográficos
Autor(a) principal: Khalil Ayache, Naim
Data de Publicação: 2023
Outros Autores: Erlilikhman Medeiros Santos, Allan, Emílio Alves Nascimento, Arthur, Alves Braga de Castro, Silvania, de Fátima Santos da Silva, Denise
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Holos
Texto Completo: http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200
Resumo: Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising.
id IFRN-3_7738bc6347c5ab606f021ae27f5934c2
oai_identifier_str oai:holos.ifrn.edu.br:article/15200
network_acronym_str IFRN-3
network_name_str Holos
repository_id_str
spelling SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLINGMAPAS AUTO-ORGANIZÁVEIS APLICADOS AO DESAGRUPAMENTO EM AMOSTRAGEM PREFERENCIALSelf-organizing mapsKohonen networksDeclustering methodsPreferential samplingMapas auto-organizáveisRedes de KohonenMétodos de desagrupamentoAmostragem preferencial Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising. Os processos de amostragem na exploração mineral muitas vezes resultam em áreas preferencialmente amostradas, com a formação de agrupamentos, que podem surgir devido a alguns fatores, tais como condições de acessibilidade, valores de atributos e a estratégia de amostragem. Os agrupamentos afetam a inferência estatística da área. O objetivo deste artigo é propor uma nova abordagem para métodos de desagrupamento usando as redes de Kohonen, Self-Organizing Maps (SOM). As SOMs é um tipo de rede neural artificial usada para classificação não supervisionada. A metodologia atribui a cada amostra um peso para calcular a média desagrupada. A atribuição de peso para cada amostra em uma área é inversamente proporcional à área densamente amostrada. A média desagrupada é dada pela soma da multiplicação do peso com o valor do atributo de cada amostra. Portanto, a lógica de atribuição de pesos é semelhante ao método Cell Declustering, porém as SOMs identificam as áreas com margens não lineares, ao contrário do método Cell Declustering. Um estudo de caso é apresentado, usando o conjunto de dados de Walker Lake. A presente pesquisa não pretende substituir os métodos clássicos de desagrupamento, mas sim apresentar uma nova abordagem para um problema rotineiro na avaliação de reservas. Embora a matemática da técnica aplicada seja de fato complexa, os resultados podem ser promissores.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTextoFigureapplication/pdfapplication/pdfhttp://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/1520010.15628/holos.2023.15200HOLOS; v. 8 n. 39 (2023): v.8 (2023)1807-1600reponame:Holosinstname:Instituto Federal do Rio Grande do Norte (IFRN)instacron:IFRNporenghttp://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3910http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3911GlobalGlobalhttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessKhalil Ayache, Naim Erlilikhman Medeiros Santos, Allan Emílio Alves Nascimento, Arthur Alves Braga de Castro, Silvaniade Fátima Santos da Silva, Denise2023-12-30T00:42:47Zoai:holos.ifrn.edu.br:article/15200Revistahttp://www2.ifrn.edu.br/ojs/index.php/HOLOSPUBhttp://www2.ifrn.edu.br/ojs/index.php/HOLOS/oaiholos@ifrn.edu.br||jyp.leite@ifrn.edu.br||propi@ifrn.edu.br1807-16001518-1634opendoar:2023-12-30T00:42:47Holos - Instituto Federal do Rio Grande do Norte (IFRN)false
dc.title.none.fl_str_mv SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
MAPAS AUTO-ORGANIZÁVEIS APLICADOS AO DESAGRUPAMENTO EM AMOSTRAGEM PREFERENCIAL
title SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
spellingShingle SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
Khalil Ayache, Naim
Self-organizing maps
Kohonen networks
Declustering methods
Preferential sampling
Mapas auto-organizáveis
Redes de Kohonen
Métodos de desagrupamento
Amostragem preferencial
title_short SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
title_full SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
title_fullStr SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
title_full_unstemmed SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
title_sort SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
author Khalil Ayache, Naim
author_facet Khalil Ayache, Naim
Erlilikhman Medeiros Santos, Allan
Emílio Alves Nascimento, Arthur
Alves Braga de Castro, Silvania
de Fátima Santos da Silva, Denise
author_role author
author2 Erlilikhman Medeiros Santos, Allan
Emílio Alves Nascimento, Arthur
Alves Braga de Castro, Silvania
de Fátima Santos da Silva, Denise
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Khalil Ayache, Naim
Erlilikhman Medeiros Santos, Allan
Emílio Alves Nascimento, Arthur
Alves Braga de Castro, Silvania
de Fátima Santos da Silva, Denise
dc.subject.por.fl_str_mv Self-organizing maps
Kohonen networks
Declustering methods
Preferential sampling
Mapas auto-organizáveis
Redes de Kohonen
Métodos de desagrupamento
Amostragem preferencial
topic Self-organizing maps
Kohonen networks
Declustering methods
Preferential sampling
Mapas auto-organizáveis
Redes de Kohonen
Métodos de desagrupamento
Amostragem preferencial
description Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Texto
Figure
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200
10.15628/holos.2023.15200
url http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200
identifier_str_mv 10.15628/holos.2023.15200
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3910
http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3911
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Global
Global
dc.publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
dc.source.none.fl_str_mv HOLOS; v. 8 n. 39 (2023): v.8 (2023)
1807-1600
reponame:Holos
instname:Instituto Federal do Rio Grande do Norte (IFRN)
instacron:IFRN
instname_str Instituto Federal do Rio Grande do Norte (IFRN)
instacron_str IFRN
institution IFRN
reponame_str Holos
collection Holos
repository.name.fl_str_mv Holos - Instituto Federal do Rio Grande do Norte (IFRN)
repository.mail.fl_str_mv holos@ifrn.edu.br||jyp.leite@ifrn.edu.br||propi@ifrn.edu.br
_version_ 1798951616714375168