SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Holos |
Texto Completo: | http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200 |
Resumo: | Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising. |
id |
IFRN-3_7738bc6347c5ab606f021ae27f5934c2 |
---|---|
oai_identifier_str |
oai:holos.ifrn.edu.br:article/15200 |
network_acronym_str |
IFRN-3 |
network_name_str |
Holos |
repository_id_str |
|
spelling |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLINGMAPAS AUTO-ORGANIZÁVEIS APLICADOS AO DESAGRUPAMENTO EM AMOSTRAGEM PREFERENCIALSelf-organizing mapsKohonen networksDeclustering methodsPreferential samplingMapas auto-organizáveisRedes de KohonenMétodos de desagrupamentoAmostragem preferencial Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising. Os processos de amostragem na exploração mineral muitas vezes resultam em áreas preferencialmente amostradas, com a formação de agrupamentos, que podem surgir devido a alguns fatores, tais como condições de acessibilidade, valores de atributos e a estratégia de amostragem. Os agrupamentos afetam a inferência estatística da área. O objetivo deste artigo é propor uma nova abordagem para métodos de desagrupamento usando as redes de Kohonen, Self-Organizing Maps (SOM). As SOMs é um tipo de rede neural artificial usada para classificação não supervisionada. A metodologia atribui a cada amostra um peso para calcular a média desagrupada. A atribuição de peso para cada amostra em uma área é inversamente proporcional à área densamente amostrada. A média desagrupada é dada pela soma da multiplicação do peso com o valor do atributo de cada amostra. Portanto, a lógica de atribuição de pesos é semelhante ao método Cell Declustering, porém as SOMs identificam as áreas com margens não lineares, ao contrário do método Cell Declustering. Um estudo de caso é apresentado, usando o conjunto de dados de Walker Lake. A presente pesquisa não pretende substituir os métodos clássicos de desagrupamento, mas sim apresentar uma nova abordagem para um problema rotineiro na avaliação de reservas. Embora a matemática da técnica aplicada seja de fato complexa, os resultados podem ser promissores.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte2023-12-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTextoFigureapplication/pdfapplication/pdfhttp://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/1520010.15628/holos.2023.15200HOLOS; v. 8 n. 39 (2023): v.8 (2023)1807-1600reponame:Holosinstname:Instituto Federal do Rio Grande do Norte (IFRN)instacron:IFRNporenghttp://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3910http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3911GlobalGlobalhttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessKhalil Ayache, Naim Erlilikhman Medeiros Santos, Allan Emílio Alves Nascimento, Arthur Alves Braga de Castro, Silvaniade Fátima Santos da Silva, Denise2023-12-30T00:42:47Zoai:holos.ifrn.edu.br:article/15200Revistahttp://www2.ifrn.edu.br/ojs/index.php/HOLOSPUBhttp://www2.ifrn.edu.br/ojs/index.php/HOLOS/oaiholos@ifrn.edu.br||jyp.leite@ifrn.edu.br||propi@ifrn.edu.br1807-16001518-1634opendoar:2023-12-30T00:42:47Holos - Instituto Federal do Rio Grande do Norte (IFRN)false |
dc.title.none.fl_str_mv |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING MAPAS AUTO-ORGANIZÁVEIS APLICADOS AO DESAGRUPAMENTO EM AMOSTRAGEM PREFERENCIAL |
title |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING |
spellingShingle |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING Khalil Ayache, Naim Self-organizing maps Kohonen networks Declustering methods Preferential sampling Mapas auto-organizáveis Redes de Kohonen Métodos de desagrupamento Amostragem preferencial |
title_short |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING |
title_full |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING |
title_fullStr |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING |
title_full_unstemmed |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING |
title_sort |
SELF-ORGANIZING MAPS APPLIED TO DECLUSTERING IN PREFERENTIAL SAMPLING |
author |
Khalil Ayache, Naim |
author_facet |
Khalil Ayache, Naim Erlilikhman Medeiros Santos, Allan Emílio Alves Nascimento, Arthur Alves Braga de Castro, Silvania de Fátima Santos da Silva, Denise |
author_role |
author |
author2 |
Erlilikhman Medeiros Santos, Allan Emílio Alves Nascimento, Arthur Alves Braga de Castro, Silvania de Fátima Santos da Silva, Denise |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Khalil Ayache, Naim Erlilikhman Medeiros Santos, Allan Emílio Alves Nascimento, Arthur Alves Braga de Castro, Silvania de Fátima Santos da Silva, Denise |
dc.subject.por.fl_str_mv |
Self-organizing maps Kohonen networks Declustering methods Preferential sampling Mapas auto-organizáveis Redes de Kohonen Métodos de desagrupamento Amostragem preferencial |
topic |
Self-organizing maps Kohonen networks Declustering methods Preferential sampling Mapas auto-organizáveis Redes de Kohonen Métodos de desagrupamento Amostragem preferencial |
description |
Sampling processes in mineral exploration often result in preferentially sampled areas, with the formation of clustering. Some factors can cause areas to be preferentially sampled, accessibility conditions, attribute values, and the sampling strategy. Clustering impacts statistical inference of area. The objective of the present paper is to propose a new approach to declustering methods using Kohonen network, Self-Organizing Maps (SOM). SOM are a type of artificial neural network used for unsupervised classification. The methodology assigns each sample a weight to calculate the declustered mean. The assignment of weight to each sample in an area is inversely proportional to the densely sampled in area. The declustered mean is given by the sum of the weight multiplication with the attribute value of each sample. Therefore, the logic of assigning weights is similar to Cell Declustering method, but the delimitation of the densified areas is different. SOM identifies areas with non-linear margins, unlike the Cell Declustering method. A case study is presented, using the Walker Lake data set. The present research is not intended to replace classical declustering methods, but rather to present a new approach to a routine problem in reserve evaluation. Although the mathematics of the applied technique is indeed complex, the results can be promising. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-27 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Texto Figure |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200 10.15628/holos.2023.15200 |
url |
http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200 |
identifier_str_mv |
10.15628/holos.2023.15200 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3910 http://www2.ifrn.edu.br/ojs/index.php/HOLOS/article/view/15200/3911 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Global Global |
dc.publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte |
publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte |
dc.source.none.fl_str_mv |
HOLOS; v. 8 n. 39 (2023): v.8 (2023) 1807-1600 reponame:Holos instname:Instituto Federal do Rio Grande do Norte (IFRN) instacron:IFRN |
instname_str |
Instituto Federal do Rio Grande do Norte (IFRN) |
instacron_str |
IFRN |
institution |
IFRN |
reponame_str |
Holos |
collection |
Holos |
repository.name.fl_str_mv |
Holos - Instituto Federal do Rio Grande do Norte (IFRN) |
repository.mail.fl_str_mv |
holos@ifrn.edu.br||jyp.leite@ifrn.edu.br||propi@ifrn.edu.br |
_version_ |
1798951616714375168 |