Icon and geometric data visualization with a self-organizing map grid

Detalhes bibliográficos
Autor(a) principal: Morais, Alessandra Marli M.
Data de Publicação: 2014
Outros Autores: Quiles, Marcos Gonçalves, Santos, Rafael D. C.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-09153-2_42
http://hdl.handle.net/11449/220199
Resumo: Data Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing.
id UNSP_73d79b6948d8807bed0a5fc3db5c033b
oai_identifier_str oai:repositorio.unesp.br:11449/220199
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Icon and geometric data visualization with a self-organizing map gridKohonen Self-organizing MapsVisualizationData Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing.National Institute for Space Research, Av dos Astronautas. 1758, CEP 12227-010, São José dos CamposUNIFESP São José Dos Campos, Rua Talim, 330, CEP 12231-280, São José dos CamposNational Institute for Space ResearchUniversidade Federal de São Paulo (UNIFESP)Morais, Alessandra Marli M.Quiles, Marcos GonçalvesSantos, Rafael D. C.2022-04-28T19:00:15Z2022-04-28T19:00:15Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject562-575http://dx.doi.org/10.1007/978-3-319-09153-2_42Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014.1611-33490302-9743http://hdl.handle.net/11449/22019910.1007/978-3-319-09153-2_422-s2.0-84904871450Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2022-04-28T19:00:15Zoai:repositorio.unesp.br:11449/220199Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:29:18.823472Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Icon and geometric data visualization with a self-organizing map grid
title Icon and geometric data visualization with a self-organizing map grid
spellingShingle Icon and geometric data visualization with a self-organizing map grid
Morais, Alessandra Marli M.
Kohonen Self-organizing Maps
Visualization
title_short Icon and geometric data visualization with a self-organizing map grid
title_full Icon and geometric data visualization with a self-organizing map grid
title_fullStr Icon and geometric data visualization with a self-organizing map grid
title_full_unstemmed Icon and geometric data visualization with a self-organizing map grid
title_sort Icon and geometric data visualization with a self-organizing map grid
author Morais, Alessandra Marli M.
author_facet Morais, Alessandra Marli M.
Quiles, Marcos Gonçalves
Santos, Rafael D. C.
author_role author
author2 Quiles, Marcos Gonçalves
Santos, Rafael D. C.
author2_role author
author
dc.contributor.none.fl_str_mv National Institute for Space Research
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv Morais, Alessandra Marli M.
Quiles, Marcos Gonçalves
Santos, Rafael D. C.
dc.subject.por.fl_str_mv Kohonen Self-organizing Maps
Visualization
topic Kohonen Self-organizing Maps
Visualization
description Data Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2022-04-28T19:00:15Z
2022-04-28T19:00:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-09153-2_42
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014.
1611-3349
0302-9743
http://hdl.handle.net/11449/220199
10.1007/978-3-319-09153-2_42
2-s2.0-84904871450
url http://dx.doi.org/10.1007/978-3-319-09153-2_42
http://hdl.handle.net/11449/220199
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014.
1611-3349
0302-9743
10.1007/978-3-319-09153-2_42
2-s2.0-84904871450
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 562-575
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129430309044224