Icon and geometric data visualization with a self-organizing map grid
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-09153-2_42 http://hdl.handle.net/11449/220199 |
Resumo: | Data Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing. |
id |
UNSP_73d79b6948d8807bed0a5fc3db5c033b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/220199 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Icon and geometric data visualization with a self-organizing map gridKohonen Self-organizing MapsVisualizationData Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing.National Institute for Space Research, Av dos Astronautas. 1758, CEP 12227-010, São José dos CamposUNIFESP São José Dos Campos, Rua Talim, 330, CEP 12231-280, São José dos CamposNational Institute for Space ResearchUniversidade Federal de São Paulo (UNIFESP)Morais, Alessandra Marli M.Quiles, Marcos GonçalvesSantos, Rafael D. C.2022-04-28T19:00:15Z2022-04-28T19:00:15Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject562-575http://dx.doi.org/10.1007/978-3-319-09153-2_42Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014.1611-33490302-9743http://hdl.handle.net/11449/22019910.1007/978-3-319-09153-2_422-s2.0-84904871450Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2022-04-28T19:00:15Zoai:repositorio.unesp.br:11449/220199Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:29:18.823472Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Icon and geometric data visualization with a self-organizing map grid |
title |
Icon and geometric data visualization with a self-organizing map grid |
spellingShingle |
Icon and geometric data visualization with a self-organizing map grid Morais, Alessandra Marli M. Kohonen Self-organizing Maps Visualization |
title_short |
Icon and geometric data visualization with a self-organizing map grid |
title_full |
Icon and geometric data visualization with a self-organizing map grid |
title_fullStr |
Icon and geometric data visualization with a self-organizing map grid |
title_full_unstemmed |
Icon and geometric data visualization with a self-organizing map grid |
title_sort |
Icon and geometric data visualization with a self-organizing map grid |
author |
Morais, Alessandra Marli M. |
author_facet |
Morais, Alessandra Marli M. Quiles, Marcos Gonçalves Santos, Rafael D. C. |
author_role |
author |
author2 |
Quiles, Marcos Gonçalves Santos, Rafael D. C. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
National Institute for Space Research Universidade Federal de São Paulo (UNIFESP) |
dc.contributor.author.fl_str_mv |
Morais, Alessandra Marli M. Quiles, Marcos Gonçalves Santos, Rafael D. C. |
dc.subject.por.fl_str_mv |
Kohonen Self-organizing Maps Visualization |
topic |
Kohonen Self-organizing Maps Visualization |
description |
Data Visualization is an important tool for tasks related to Knowledge Discovery in Databases (KDD). Often the data to be visualized is complex, have multiple dimensions or features and consists of many individual data points, making visualization with traditional icon- and pixel-based and geometric techniques difficult. In this paper we propose a combination of icon-based and geometric-based visualization techniques backed up by a Self-Organizing Map, which allows dimensionality reduction and topology preservation. The technique is applied to some datasets of simple and intermediate complexity, and the results shows that it is possible to reduce clutter and facilitate identification of associations, clusters and outliers. © 2014 Springer International Publishing. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2022-04-28T19:00:15Z 2022-04-28T19:00:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-09153-2_42 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014. 1611-3349 0302-9743 http://hdl.handle.net/11449/220199 10.1007/978-3-319-09153-2_42 2-s2.0-84904871450 |
url |
http://dx.doi.org/10.1007/978-3-319-09153-2_42 http://hdl.handle.net/11449/220199 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8584 LNCS, n. PART 6, p. 562-575, 2014. 1611-3349 0302-9743 10.1007/978-3-319-09153-2_42 2-s2.0-84904871450 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
562-575 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129430309044224 |