An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Remat (Bento Gonçalves) |
Texto Completo: | https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305 |
Resumo: | The issue of finding an interior point to a polyhedron has applications in many areas, especially in linear programming. In this work we approach the issue of finding an interior point to a polyhedron using the Fourier-Motzkin Elimination Method approach. It consists of reducing a system of linear inequalities that defines the polyhedron, by eliminating variables. A matrix version of this method was employed in order to facilitate its computational implementation, and some examples were presented with the purpose of illustrating the proposed methodology. Subsequently the complexity analysis of the algorithm was carried out in order to investigate the behavior of the technique when increasing the number of variables and restrictions and, thus, presenting a field of application to the technique. By analyzing the algorithm, we concluded that it has exponential complexity, since the number of inequalities grows exponentially as the number of variables in the issue increases. The algorithm proved to be efficient for issue with a small number of inequalities for R2 and R3. |
id |
IFRS-2_447c99c9d5f61c03120598a734d9fdea |
---|---|
oai_identifier_str |
oai:ojs2.periodicos.ifrs.edu.br:article/4305 |
network_acronym_str |
IFRS-2 |
network_name_str |
Remat (Bento Gonçalves) |
repository_id_str |
|
spelling |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedronUma análise da utilização do método de eliminação de Fourier-Motzkin para encontrar um ponto interior a um poliedroSystems of Linear InequalitiesPolyhedronInterior PointFourier-Motzkin EliminationSistemas de Inequações LinearesPoliedroPonto InteriorEliminação de Fourier-MotzkinThe issue of finding an interior point to a polyhedron has applications in many areas, especially in linear programming. In this work we approach the issue of finding an interior point to a polyhedron using the Fourier-Motzkin Elimination Method approach. It consists of reducing a system of linear inequalities that defines the polyhedron, by eliminating variables. A matrix version of this method was employed in order to facilitate its computational implementation, and some examples were presented with the purpose of illustrating the proposed methodology. Subsequently the complexity analysis of the algorithm was carried out in order to investigate the behavior of the technique when increasing the number of variables and restrictions and, thus, presenting a field of application to the technique. By analyzing the algorithm, we concluded that it has exponential complexity, since the number of inequalities grows exponentially as the number of variables in the issue increases. The algorithm proved to be efficient for issue with a small number of inequalities for R2 and R3.O problema de encontrar um ponto interior a um poliedro tem aplicações em muitas áreas, sobretudo em programação linear. Neste trabalho, abordamos o problema de encontrar um ponto interior a um poliedro, utilizando como estratégia o Método de Eliminação de Fourier-Motzkin. Este método consiste em reduzir um sistema de inequações lineares que define o poliedro, através da eliminação de variáveis. Foi-se utilizada uma versão matricial deste método a fim de facilitar sua implementação computacional e, para ilustrar a metodologia proposta, exemplos são apresentados. Em seguida, fizemos a análise de complexidade do algoritmo, com a finalidade de investigar o comportamento da técnica quando do aumento do número de variáveis e de restrições e, dessa forma, apresentando um campo de aplicação da técnica. Pela análise do algoritmo, concluímos que este tem complexidade exponencial, pois o número de inequações cresce exponencialmente conforme se aumenta o número de variáveis no problema. O algoritmo se mostrou eficiente para problemas com um número pequeno de inequações para o R2 e o R3.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul2021-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/430510.35819/remat2021v7i1id4305REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3004REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3004REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e30042447-2689reponame:Remat (Bento Gonçalves)instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)instacron:IFRSporhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305/2840Copyright (c) 2021 REMAT: Revista Eletrônica da Matemáticahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMonticeli, André RodriguesMappa, Paulo César2022-12-28T16:06:35Zoai:ojs2.periodicos.ifrs.edu.br:article/4305Revistahttp://periodicos.ifrs.edu.br/index.php/REMATPUBhttps://periodicos.ifrs.edu.br/index.php/REMAT/oai||greice.andreis@caxias.ifrs.edu.br2447-26892447-2689opendoar:2022-12-28T16:06:35Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)false |
dc.title.none.fl_str_mv |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron Uma análise da utilização do método de eliminação de Fourier-Motzkin para encontrar um ponto interior a um poliedro |
title |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron |
spellingShingle |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron Monticeli, André Rodrigues Systems of Linear Inequalities Polyhedron Interior Point Fourier-Motzkin Elimination Sistemas de Inequações Lineares Poliedro Ponto Interior Eliminação de Fourier-Motzkin |
title_short |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron |
title_full |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron |
title_fullStr |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron |
title_full_unstemmed |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron |
title_sort |
An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron |
author |
Monticeli, André Rodrigues |
author_facet |
Monticeli, André Rodrigues Mappa, Paulo César |
author_role |
author |
author2 |
Mappa, Paulo César |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Monticeli, André Rodrigues Mappa, Paulo César |
dc.subject.por.fl_str_mv |
Systems of Linear Inequalities Polyhedron Interior Point Fourier-Motzkin Elimination Sistemas de Inequações Lineares Poliedro Ponto Interior Eliminação de Fourier-Motzkin |
topic |
Systems of Linear Inequalities Polyhedron Interior Point Fourier-Motzkin Elimination Sistemas de Inequações Lineares Poliedro Ponto Interior Eliminação de Fourier-Motzkin |
description |
The issue of finding an interior point to a polyhedron has applications in many areas, especially in linear programming. In this work we approach the issue of finding an interior point to a polyhedron using the Fourier-Motzkin Elimination Method approach. It consists of reducing a system of linear inequalities that defines the polyhedron, by eliminating variables. A matrix version of this method was employed in order to facilitate its computational implementation, and some examples were presented with the purpose of illustrating the proposed methodology. Subsequently the complexity analysis of the algorithm was carried out in order to investigate the behavior of the technique when increasing the number of variables and restrictions and, thus, presenting a field of application to the technique. By analyzing the algorithm, we concluded that it has exponential complexity, since the number of inequalities grows exponentially as the number of variables in the issue increases. The algorithm proved to be efficient for issue with a small number of inequalities for R2 and R3. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305 10.35819/remat2021v7i1id4305 |
url |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305 |
identifier_str_mv |
10.35819/remat2021v7i1id4305 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305/2840 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul |
publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul |
dc.source.none.fl_str_mv |
REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3004 REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3004 REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e3004 2447-2689 reponame:Remat (Bento Gonçalves) instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) instacron:IFRS |
instname_str |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) |
instacron_str |
IFRS |
institution |
IFRS |
reponame_str |
Remat (Bento Gonçalves) |
collection |
Remat (Bento Gonçalves) |
repository.name.fl_str_mv |
Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) |
repository.mail.fl_str_mv |
||greice.andreis@caxias.ifrs.edu.br |
_version_ |
1798329706016145408 |