An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron

Detalhes bibliográficos
Autor(a) principal: Monticeli, André Rodrigues
Data de Publicação: 2021
Outros Autores: Mappa, Paulo César
Tipo de documento: Artigo
Idioma: por
Título da fonte: Remat (Bento Gonçalves)
Texto Completo: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305
Resumo: The issue of finding an interior point to a polyhedron has applications in many areas, especially in linear programming. In this work we approach the issue of finding an interior point to a polyhedron using the Fourier-Motzkin Elimination Method approach. It consists of reducing a system of linear inequalities that defines the polyhedron, by eliminating variables. A matrix version of this method was employed in order to facilitate its computational implementation, and some examples were presented with the purpose of illustrating the proposed methodology. Subsequently the complexity analysis of the algorithm was carried out in order to investigate the behavior of the technique when increasing the number of variables and restrictions and, thus, presenting a field of application to the technique. By analyzing the algorithm, we concluded that it has exponential complexity, since the number of inequalities grows exponentially as the number of variables in the issue increases. The algorithm proved to be efficient for issue with a small number of inequalities for R2 and R3.
id IFRS-2_447c99c9d5f61c03120598a734d9fdea
oai_identifier_str oai:ojs2.periodicos.ifrs.edu.br:article/4305
network_acronym_str IFRS-2
network_name_str Remat (Bento Gonçalves)
repository_id_str
spelling An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedronUma análise da utilização do método de eliminação de Fourier-Motzkin para encontrar um ponto interior a um poliedroSystems of Linear InequalitiesPolyhedronInterior PointFourier-Motzkin EliminationSistemas de Inequações LinearesPoliedroPonto InteriorEliminação de Fourier-MotzkinThe issue of finding an interior point to a polyhedron has applications in many areas, especially in linear programming. In this work we approach the issue of finding an interior point to a polyhedron using the Fourier-Motzkin Elimination Method approach. It consists of reducing a system of linear inequalities that defines the polyhedron, by eliminating variables. A matrix version of this method was employed in order to facilitate its computational implementation, and some examples were presented with the purpose of illustrating the proposed methodology. Subsequently the complexity analysis of the algorithm was carried out in order to investigate the behavior of the technique when increasing the number of variables and restrictions and, thus, presenting a field of application to the technique. By analyzing the algorithm, we concluded that it has exponential complexity, since the number of inequalities grows exponentially as the number of variables in the issue increases. The algorithm proved to be efficient for issue with a small number of inequalities for R2 and R3.O problema de encontrar um ponto interior a um poliedro tem aplicações em muitas áreas, sobretudo em programação linear. Neste trabalho, abordamos o problema de encontrar um ponto interior a um poliedro, utilizando como estratégia o Método de Eliminação de Fourier-Motzkin. Este método consiste em reduzir um sistema de inequações lineares que define o poliedro, através da eliminação de variáveis. Foi-se utilizada uma versão matricial deste método a fim de facilitar sua implementação computacional e, para ilustrar a metodologia proposta, exemplos são apresentados. Em seguida, fizemos a análise de complexidade do algoritmo, com a finalidade de investigar o comportamento da técnica quando do aumento do número de variáveis e de restrições e, dessa forma, apresentando um campo de aplicação da técnica. Pela análise do algoritmo, concluímos que este tem complexidade exponencial, pois o número de inequações cresce exponencialmente conforme se aumenta o número de variáveis no problema. O algoritmo se mostrou eficiente para problemas com um número pequeno de inequações para o R2 e o R3.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul2021-01-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/430510.35819/remat2021v7i1id4305REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3004REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3004REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e30042447-2689reponame:Remat (Bento Gonçalves)instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)instacron:IFRSporhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305/2840Copyright (c) 2021 REMAT: Revista Eletrônica da Matemáticahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMonticeli, André RodriguesMappa, Paulo César2022-12-28T16:06:35Zoai:ojs2.periodicos.ifrs.edu.br:article/4305Revistahttp://periodicos.ifrs.edu.br/index.php/REMATPUBhttps://periodicos.ifrs.edu.br/index.php/REMAT/oai||greice.andreis@caxias.ifrs.edu.br2447-26892447-2689opendoar:2022-12-28T16:06:35Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)false
dc.title.none.fl_str_mv An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
Uma análise da utilização do método de eliminação de Fourier-Motzkin para encontrar um ponto interior a um poliedro
title An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
spellingShingle An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
Monticeli, André Rodrigues
Systems of Linear Inequalities
Polyhedron
Interior Point
Fourier-Motzkin Elimination
Sistemas de Inequações Lineares
Poliedro
Ponto Interior
Eliminação de Fourier-Motzkin
title_short An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
title_full An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
title_fullStr An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
title_full_unstemmed An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
title_sort An analysis of the use of the Fourier-Motzkin elimination method to find an interior point to a polyhedron
author Monticeli, André Rodrigues
author_facet Monticeli, André Rodrigues
Mappa, Paulo César
author_role author
author2 Mappa, Paulo César
author2_role author
dc.contributor.author.fl_str_mv Monticeli, André Rodrigues
Mappa, Paulo César
dc.subject.por.fl_str_mv Systems of Linear Inequalities
Polyhedron
Interior Point
Fourier-Motzkin Elimination
Sistemas de Inequações Lineares
Poliedro
Ponto Interior
Eliminação de Fourier-Motzkin
topic Systems of Linear Inequalities
Polyhedron
Interior Point
Fourier-Motzkin Elimination
Sistemas de Inequações Lineares
Poliedro
Ponto Interior
Eliminação de Fourier-Motzkin
description The issue of finding an interior point to a polyhedron has applications in many areas, especially in linear programming. In this work we approach the issue of finding an interior point to a polyhedron using the Fourier-Motzkin Elimination Method approach. It consists of reducing a system of linear inequalities that defines the polyhedron, by eliminating variables. A matrix version of this method was employed in order to facilitate its computational implementation, and some examples were presented with the purpose of illustrating the proposed methodology. Subsequently the complexity analysis of the algorithm was carried out in order to investigate the behavior of the technique when increasing the number of variables and restrictions and, thus, presenting a field of application to the technique. By analyzing the algorithm, we concluded that it has exponential complexity, since the number of inequalities grows exponentially as the number of variables in the issue increases. The algorithm proved to be efficient for issue with a small number of inequalities for R2 and R3.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305
10.35819/remat2021v7i1id4305
url https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305
identifier_str_mv 10.35819/remat2021v7i1id4305
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4305/2840
dc.rights.driver.fl_str_mv Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul
publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul
dc.source.none.fl_str_mv REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3004
REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3004
REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e3004
2447-2689
reponame:Remat (Bento Gonçalves)
instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
instacron:IFRS
instname_str Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
instacron_str IFRS
institution IFRS
reponame_str Remat (Bento Gonçalves)
collection Remat (Bento Gonçalves)
repository.name.fl_str_mv Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
repository.mail.fl_str_mv ||greice.andreis@caxias.ifrs.edu.br
_version_ 1798329706016145408