Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel

Detalhes bibliográficos
Autor(a) principal: Kamassury, Jorge Kysnney Santos
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: por
Título da fonte: Remat (Bento Gonçalves)
Texto Completo: https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389
Resumo: Short-length codes have been the subject of recent studies mainly due to the need for specific communication requirements expressed by emerging technologies. However, for the most promising code class (BCH), decoding is complex when using traditional decoders. In this context, projects that use neural networks for this purpose appear as interesting alternatives. That said, in this article, the decoder project proposed in the literature that applies the neural network to estimate the error pattern considering the received vector syndrome extends to the BCH codes of length n less than or equal to 31. In addition, a new decoder is introduced, one that iteratively estimates the most reliable positions to be the erroneous bits of the error pattern previously predicted by a neural network. The results presented show that, for all the analyzed codes, the new decoder reaches the maximum theoretical performances.
id IFRS-2_88ab8b88dcfa1cb27a4f10697b4eac0b
oai_identifier_str oai:ojs2.periodicos.ifrs.edu.br:article/4389
network_acronym_str IFRS-2
network_name_str Remat (Bento Gonçalves)
repository_id_str
spelling Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric ChannelDecodificador baseado em Rede Neural Profunda para Códigos de Bloco Lineares Curtos Transmitidos via Canal Binário SimétricoNeural Network-Based DecoderBinary Symmetric ChannelError Correcting CodesDecodificador Baseado em Rede NeuralCanal Binário SimétricoCódigos Corretores de ErrosShort-length codes have been the subject of recent studies mainly due to the need for specific communication requirements expressed by emerging technologies. However, for the most promising code class (BCH), decoding is complex when using traditional decoders. In this context, projects that use neural networks for this purpose appear as interesting alternatives. That said, in this article, the decoder project proposed in the literature that applies the neural network to estimate the error pattern considering the received vector syndrome extends to the BCH codes of length n less than or equal to 31. In addition, a new decoder is introduced, one that iteratively estimates the most reliable positions to be the erroneous bits of the error pattern previously predicted by a neural network. The results presented show that, for all the analyzed codes, the new decoder reaches the maximum theoretical performances.Os códigos de comprimento curto têm sido alvo de estudos recentes devido, principalmente, às exigências de tecnologias emergentes por requisitos específicos de comunicação. Entretanto, para a classe de código mais promissora (BCH), a decodificação é complexa quando se usa os decodificadores tradicionais. Nesse contexto, os projetos que empregam redes neurais para esse propósito manifestam-se como interessantes alternativas. Isto posto, neste artigo estende-se, para os códigos BCH de comprimento n menor ou igual a 31, o projeto de decodificador proposto na literatura que aplica a rede neural para estimar o padrão de erro a partir da síndrome do vetor recebido. Além disso, introduz-se um novo decodificador que estima iterativamente as posições mais confiáveis para serem os bits errôneos do padrão de erro previamente predito por uma rede neural. Os resultados apresentados evidenciam que para todos os códigos analisados, o novo decodificador alcança os máximos desempenhos teóricos.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul2021-02-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/438910.35819/remat2021v7i1id4389REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3006REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3006REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e30062447-2689reponame:Remat (Bento Gonçalves)instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)instacron:IFRSporhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389/2855Copyright (c) 2021 REMAT: Revista Eletrônica da Matemáticahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessKamassury, Jorge Kysnney Santos2022-12-28T16:06:35Zoai:ojs2.periodicos.ifrs.edu.br:article/4389Revistahttp://periodicos.ifrs.edu.br/index.php/REMATPUBhttps://periodicos.ifrs.edu.br/index.php/REMAT/oai||greice.andreis@caxias.ifrs.edu.br2447-26892447-2689opendoar:2022-12-28T16:06:35Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)false
dc.title.none.fl_str_mv Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
Decodificador baseado em Rede Neural Profunda para Códigos de Bloco Lineares Curtos Transmitidos via Canal Binário Simétrico
title Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
spellingShingle Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
Kamassury, Jorge Kysnney Santos
Neural Network-Based Decoder
Binary Symmetric Channel
Error Correcting Codes
Decodificador Baseado em Rede Neural
Canal Binário Simétrico
Códigos Corretores de Erros
title_short Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
title_full Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
title_fullStr Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
title_full_unstemmed Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
title_sort Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
author Kamassury, Jorge Kysnney Santos
author_facet Kamassury, Jorge Kysnney Santos
author_role author
dc.contributor.author.fl_str_mv Kamassury, Jorge Kysnney Santos
dc.subject.por.fl_str_mv Neural Network-Based Decoder
Binary Symmetric Channel
Error Correcting Codes
Decodificador Baseado em Rede Neural
Canal Binário Simétrico
Códigos Corretores de Erros
topic Neural Network-Based Decoder
Binary Symmetric Channel
Error Correcting Codes
Decodificador Baseado em Rede Neural
Canal Binário Simétrico
Códigos Corretores de Erros
description Short-length codes have been the subject of recent studies mainly due to the need for specific communication requirements expressed by emerging technologies. However, for the most promising code class (BCH), decoding is complex when using traditional decoders. In this context, projects that use neural networks for this purpose appear as interesting alternatives. That said, in this article, the decoder project proposed in the literature that applies the neural network to estimate the error pattern considering the received vector syndrome extends to the BCH codes of length n less than or equal to 31. In addition, a new decoder is introduced, one that iteratively estimates the most reliable positions to be the erroneous bits of the error pattern previously predicted by a neural network. The results presented show that, for all the analyzed codes, the new decoder reaches the maximum theoretical performances.
publishDate 2021
dc.date.none.fl_str_mv 2021-02-22
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389
10.35819/remat2021v7i1id4389
url https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389
identifier_str_mv 10.35819/remat2021v7i1id4389
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389/2855
dc.rights.driver.fl_str_mv Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul
publisher.none.fl_str_mv Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul
dc.source.none.fl_str_mv REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3006
REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3006
REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e3006
2447-2689
reponame:Remat (Bento Gonçalves)
instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
instacron:IFRS
instname_str Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
instacron_str IFRS
institution IFRS
reponame_str Remat (Bento Gonçalves)
collection Remat (Bento Gonçalves)
repository.name.fl_str_mv Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)
repository.mail.fl_str_mv ||greice.andreis@caxias.ifrs.edu.br
_version_ 1798329706023485440