Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Remat (Bento Gonçalves) |
Texto Completo: | https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389 |
Resumo: | Short-length codes have been the subject of recent studies mainly due to the need for specific communication requirements expressed by emerging technologies. However, for the most promising code class (BCH), decoding is complex when using traditional decoders. In this context, projects that use neural networks for this purpose appear as interesting alternatives. That said, in this article, the decoder project proposed in the literature that applies the neural network to estimate the error pattern considering the received vector syndrome extends to the BCH codes of length n less than or equal to 31. In addition, a new decoder is introduced, one that iteratively estimates the most reliable positions to be the erroneous bits of the error pattern previously predicted by a neural network. The results presented show that, for all the analyzed codes, the new decoder reaches the maximum theoretical performances. |
id |
IFRS-2_88ab8b88dcfa1cb27a4f10697b4eac0b |
---|---|
oai_identifier_str |
oai:ojs2.periodicos.ifrs.edu.br:article/4389 |
network_acronym_str |
IFRS-2 |
network_name_str |
Remat (Bento Gonçalves) |
repository_id_str |
|
spelling |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric ChannelDecodificador baseado em Rede Neural Profunda para Códigos de Bloco Lineares Curtos Transmitidos via Canal Binário SimétricoNeural Network-Based DecoderBinary Symmetric ChannelError Correcting CodesDecodificador Baseado em Rede NeuralCanal Binário SimétricoCódigos Corretores de ErrosShort-length codes have been the subject of recent studies mainly due to the need for specific communication requirements expressed by emerging technologies. However, for the most promising code class (BCH), decoding is complex when using traditional decoders. In this context, projects that use neural networks for this purpose appear as interesting alternatives. That said, in this article, the decoder project proposed in the literature that applies the neural network to estimate the error pattern considering the received vector syndrome extends to the BCH codes of length n less than or equal to 31. In addition, a new decoder is introduced, one that iteratively estimates the most reliable positions to be the erroneous bits of the error pattern previously predicted by a neural network. The results presented show that, for all the analyzed codes, the new decoder reaches the maximum theoretical performances.Os códigos de comprimento curto têm sido alvo de estudos recentes devido, principalmente, às exigências de tecnologias emergentes por requisitos específicos de comunicação. Entretanto, para a classe de código mais promissora (BCH), a decodificação é complexa quando se usa os decodificadores tradicionais. Nesse contexto, os projetos que empregam redes neurais para esse propósito manifestam-se como interessantes alternativas. Isto posto, neste artigo estende-se, para os códigos BCH de comprimento n menor ou igual a 31, o projeto de decodificador proposto na literatura que aplica a rede neural para estimar o padrão de erro a partir da síndrome do vetor recebido. Além disso, introduz-se um novo decodificador que estima iterativamente as posições mais confiáveis para serem os bits errôneos do padrão de erro previamente predito por uma rede neural. Os resultados apresentados evidenciam que para todos os códigos analisados, o novo decodificador alcança os máximos desempenhos teóricos.Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul2021-02-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/438910.35819/remat2021v7i1id4389REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3006REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3006REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e30062447-2689reponame:Remat (Bento Gonçalves)instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)instacron:IFRSporhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389/2855Copyright (c) 2021 REMAT: Revista Eletrônica da Matemáticahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessKamassury, Jorge Kysnney Santos2022-12-28T16:06:35Zoai:ojs2.periodicos.ifrs.edu.br:article/4389Revistahttp://periodicos.ifrs.edu.br/index.php/REMATPUBhttps://periodicos.ifrs.edu.br/index.php/REMAT/oai||greice.andreis@caxias.ifrs.edu.br2447-26892447-2689opendoar:2022-12-28T16:06:35Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)false |
dc.title.none.fl_str_mv |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel Decodificador baseado em Rede Neural Profunda para Códigos de Bloco Lineares Curtos Transmitidos via Canal Binário Simétrico |
title |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel |
spellingShingle |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel Kamassury, Jorge Kysnney Santos Neural Network-Based Decoder Binary Symmetric Channel Error Correcting Codes Decodificador Baseado em Rede Neural Canal Binário Simétrico Códigos Corretores de Erros |
title_short |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel |
title_full |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel |
title_fullStr |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel |
title_full_unstemmed |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel |
title_sort |
Deep Neural Network-based Decoder for Short Linear Block Codes Transmitted via Binary Symmetric Channel |
author |
Kamassury, Jorge Kysnney Santos |
author_facet |
Kamassury, Jorge Kysnney Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Kamassury, Jorge Kysnney Santos |
dc.subject.por.fl_str_mv |
Neural Network-Based Decoder Binary Symmetric Channel Error Correcting Codes Decodificador Baseado em Rede Neural Canal Binário Simétrico Códigos Corretores de Erros |
topic |
Neural Network-Based Decoder Binary Symmetric Channel Error Correcting Codes Decodificador Baseado em Rede Neural Canal Binário Simétrico Códigos Corretores de Erros |
description |
Short-length codes have been the subject of recent studies mainly due to the need for specific communication requirements expressed by emerging technologies. However, for the most promising code class (BCH), decoding is complex when using traditional decoders. In this context, projects that use neural networks for this purpose appear as interesting alternatives. That said, in this article, the decoder project proposed in the literature that applies the neural network to estimate the error pattern considering the received vector syndrome extends to the BCH codes of length n less than or equal to 31. In addition, a new decoder is introduced, one that iteratively estimates the most reliable positions to be the erroneous bits of the error pattern previously predicted by a neural network. The results presented show that, for all the analyzed codes, the new decoder reaches the maximum theoretical performances. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-22 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389 10.35819/remat2021v7i1id4389 |
url |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389 |
identifier_str_mv |
10.35819/remat2021v7i1id4389 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4389/2855 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul |
publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul |
dc.source.none.fl_str_mv |
REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e3006 REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e3006 REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e3006 2447-2689 reponame:Remat (Bento Gonçalves) instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) instacron:IFRS |
instname_str |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) |
instacron_str |
IFRS |
institution |
IFRS |
reponame_str |
Remat (Bento Gonçalves) |
collection |
Remat (Bento Gonçalves) |
repository.name.fl_str_mv |
Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) |
repository.mail.fl_str_mv |
||greice.andreis@caxias.ifrs.edu.br |
_version_ |
1798329706023485440 |