Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Remat (Bento Gonçalves) |
Texto Completo: | https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4176 |
Resumo: | This work refers to a research accomplish with a group of settlers from the Che-Guevara Settlement, situated of the county of Itaberái/GO. The objective was to analyze in social relations (transcendence drive) and productive (survival drive) the presupposed of ethnomathematics in the Che-Guevara settlement. It was mediated by the following questions: How the generation, organization (social and intellectual) and dissemination of knowledge, sometimes mathematized, imbued with sociocultural importance and essential for the permanence those settled in the region, can be observed/witnessed/understood? And from which social institutions, in which the settlers act actively by sharing knowledge and compatible behaviors that identify and characterize as a sociocultural group? To understand that in productive activities and social relations there is exchange of knowledge and practices (sometimes mathematician), asked in this research: What are the processes of generation, organization (social and intellectual) and diffusion from mathematical knowledge in cultural system of Che-Guevara settlement in Itaberaí/GO? Thereunto, we support in D’Ambrosio (2002), main Brazilian researcher on the Ethnomathematics Program and cultural system that constitutes of drive survival and transcendence, Bergamasco and Norder (1996), Medeiros and Leite (1999) about the formation of Brazilian rural settlements and social relations, Bertti (2002) and Araújo (2005) that indicate the settlements as formative institutions, besides Santana (2008) that describes the history of formation from Che-Guevara Settlement and the trajectory of settlers struggle. The methodology that structured the research was based on Ethnography: observations and interviews. By analyzing the interviews, we realize that the settlers do not recognize mathematical knowledge [...] |
id |
IFRS-2_b668b4c62977672cef8adfea400db057 |
---|---|
oai_identifier_str |
oai:ojs2.periodicos.ifrs.edu.br:article/4176 |
network_acronym_str |
IFRS-2 |
network_name_str |
Remat (Bento Gonçalves) |
repository_id_str |
|
spelling |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practiceEtnomatemática e o Assentamento Rural Che-Guevara: pulsões de sobrevivência e transcendência no saber/fazer do assentadoEthnomathematicsRural SettlementSurvivalTranscendenceCultureEtnomatemáticaAssentamento RuralSobrevivênciaTranscendênciaCulturaThis work refers to a research accomplish with a group of settlers from the Che-Guevara Settlement, situated of the county of Itaberái/GO. The objective was to analyze in social relations (transcendence drive) and productive (survival drive) the presupposed of ethnomathematics in the Che-Guevara settlement. It was mediated by the following questions: How the generation, organization (social and intellectual) and dissemination of knowledge, sometimes mathematized, imbued with sociocultural importance and essential for the permanence those settled in the region, can be observed/witnessed/understood? And from which social institutions, in which the settlers act actively by sharing knowledge and compatible behaviors that identify and characterize as a sociocultural group? To understand that in productive activities and social relations there is exchange of knowledge and practices (sometimes mathematician), asked in this research: What are the processes of generation, organization (social and intellectual) and diffusion from mathematical knowledge in cultural system of Che-Guevara settlement in Itaberaí/GO? Thereunto, we support in D’Ambrosio (2002), main Brazilian researcher on the Ethnomathematics Program and cultural system that constitutes of drive survival and transcendence, Bergamasco and Norder (1996), Medeiros and Leite (1999) about the formation of Brazilian rural settlements and social relations, Bertti (2002) and Araújo (2005) that indicate the settlements as formative institutions, besides Santana (2008) that describes the history of formation from Che-Guevara Settlement and the trajectory of settlers struggle. The methodology that structured the research was based on Ethnography: observations and interviews. By analyzing the interviews, we realize that the settlers do not recognize mathematical knowledge [...]Este trabalho refere-se a uma pesquisa realizada junto a um grupo de assentados do Assentamento Che-Guevara, localizado no município de Itaberaí/GO. Objetivou-se analisar nas relações sociais (pulsão de transcendência) e produtivas (pulsão de sobrevivência) os pressupostos da Etnomatemática no assentamento Che-Guevara. Foi mediada pelos seguintes questionamentos: De que modo a geração, organização (social e intelectual) e difusão de conhecimentos, por vezes matematizada, imbuída de importância sociocultural e essencial para a permanência na desses assentados na região, pode ser observada/presenciada/compreendida? E a partir de quais instituições sociais, nas quais os assentados atuam ativamente pelo compartilhamento de conhecimentos e comportamentos compatibilizados que os identificam e caracterizam como um grupo sociocultural? Ao entender que nas atividades produtivas e relações sociais há troca de saberes e fazeres (por vezes matemático) perguntou-se nesta pesquisa: Quais os processos de geração, organização (social e intelectual) e difusão do conhecimento matemático no sistema cultural do assentamento Che-Guevara em Itaberaí/Goiás? Para isso, nos respaldamos em D’Ambrosio (2002), principal pesquisador brasileiro diante do Programa Etnomatemática e sistema cultural que se constitui pela pulsão de sobrevivência e transcendência, Bergamasco e Norder (1996), Medeiros e Leite (1999) sobre a formação de assentamentos rurais brasileiros e relações sociais, Bertti (2002) e Araújo (2005), que apontam os assentamentos como instituições formativas, além de Santana (2008) que descreve a história de formação do Assentamento Che-Guevara e a trajetória de luta dos assentados. A metodologia que estruturou a pesquisa baseou-se na Etnografia: observações e entrevistas. Ao analisar as entrevistas, percebemos que os assentados [...]Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul2021-02-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos paresapplication/pdfhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/417610.35819/remat2021v7i1id4176REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e2004REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e2004REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e20042447-2689reponame:Remat (Bento Gonçalves)instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)instacron:IFRSporhttps://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4176/2857Copyright (c) 2021 REMAT: Revista Eletrônica da Matemáticahttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCruz, Lilian de Campos MarinhoDaúde, Rodrigo Bastos2022-12-28T16:06:35Zoai:ojs2.periodicos.ifrs.edu.br:article/4176Revistahttp://periodicos.ifrs.edu.br/index.php/REMATPUBhttps://periodicos.ifrs.edu.br/index.php/REMAT/oai||greice.andreis@caxias.ifrs.edu.br2447-26892447-2689opendoar:2022-12-28T16:06:35Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)false |
dc.title.none.fl_str_mv |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice Etnomatemática e o Assentamento Rural Che-Guevara: pulsões de sobrevivência e transcendência no saber/fazer do assentado |
title |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice |
spellingShingle |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice Cruz, Lilian de Campos Marinho Ethnomathematics Rural Settlement Survival Transcendence Culture Etnomatemática Assentamento Rural Sobrevivência Transcendência Cultura |
title_short |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice |
title_full |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice |
title_fullStr |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice |
title_full_unstemmed |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice |
title_sort |
Ethnomathematics and the Che-Guevara Rural Settlement: drives for survival and transcendence in the settler’s knowledge/practice |
author |
Cruz, Lilian de Campos Marinho |
author_facet |
Cruz, Lilian de Campos Marinho Daúde, Rodrigo Bastos |
author_role |
author |
author2 |
Daúde, Rodrigo Bastos |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Cruz, Lilian de Campos Marinho Daúde, Rodrigo Bastos |
dc.subject.por.fl_str_mv |
Ethnomathematics Rural Settlement Survival Transcendence Culture Etnomatemática Assentamento Rural Sobrevivência Transcendência Cultura |
topic |
Ethnomathematics Rural Settlement Survival Transcendence Culture Etnomatemática Assentamento Rural Sobrevivência Transcendência Cultura |
description |
This work refers to a research accomplish with a group of settlers from the Che-Guevara Settlement, situated of the county of Itaberái/GO. The objective was to analyze in social relations (transcendence drive) and productive (survival drive) the presupposed of ethnomathematics in the Che-Guevara settlement. It was mediated by the following questions: How the generation, organization (social and intellectual) and dissemination of knowledge, sometimes mathematized, imbued with sociocultural importance and essential for the permanence those settled in the region, can be observed/witnessed/understood? And from which social institutions, in which the settlers act actively by sharing knowledge and compatible behaviors that identify and characterize as a sociocultural group? To understand that in productive activities and social relations there is exchange of knowledge and practices (sometimes mathematician), asked in this research: What are the processes of generation, organization (social and intellectual) and diffusion from mathematical knowledge in cultural system of Che-Guevara settlement in Itaberaí/GO? Thereunto, we support in D’Ambrosio (2002), main Brazilian researcher on the Ethnomathematics Program and cultural system that constitutes of drive survival and transcendence, Bergamasco and Norder (1996), Medeiros and Leite (1999) about the formation of Brazilian rural settlements and social relations, Bertti (2002) and Araújo (2005) that indicate the settlements as formative institutions, besides Santana (2008) that describes the history of formation from Che-Guevara Settlement and the trajectory of settlers struggle. The methodology that structured the research was based on Ethnography: observations and interviews. By analyzing the interviews, we realize that the settlers do not recognize mathematical knowledge [...] |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4176 10.35819/remat2021v7i1id4176 |
url |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4176 |
identifier_str_mv |
10.35819/remat2021v7i1id4176 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ifrs.edu.br/index.php/REMAT/article/view/4176/2857 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 REMAT: Revista Eletrônica da Matemática https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul |
publisher.none.fl_str_mv |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul |
dc.source.none.fl_str_mv |
REMAT: Revista Eletrônica da Matemática; Vol. 7 No. 1 (2021); e2004 REMAT: Revista Eletrônica da Matemática; Vol. 7 Núm. 1 (2021); e2004 REMAT: Revista Eletrônica da Matemática; v. 7 n. 1 (2021); e2004 2447-2689 reponame:Remat (Bento Gonçalves) instname:Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) instacron:IFRS |
instname_str |
Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) |
instacron_str |
IFRS |
institution |
IFRS |
reponame_str |
Remat (Bento Gonçalves) |
collection |
Remat (Bento Gonçalves) |
repository.name.fl_str_mv |
Remat (Bento Gonçalves) - Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS) |
repository.mail.fl_str_mv |
||greice.andreis@caxias.ifrs.edu.br |
_version_ |
1798329705685843968 |