Towards testing the "honeycomb rippling model" in cerrado

Detalhes bibliográficos
Autor(a) principal: Gonçalves,CS
Data de Publicação: 2011
Outros Autores: Batalha,MA
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842011000300009
Resumo: Savannas are tropical formations in which trees and grasses coexist. According to the "honeycomb rippling model", inter-tree competition leads to an effect of trees growing and dying due to competition, which, at fine spatial scale, would resemble honeycomb rippling. The model predicts that the taller the trees, the higher the inter-tree distances and the evenness of inter-tree distances. The model had been corroborated in arid savannas, in what appears to be caused by uneven distribution of rains, but had not yet been tested in seasonal savannas, such as the cerrado, which could be caused by the irregular occurrence of fire.A basic assumption of the model is that strong inter-tree competition affects growth (estimated by height) and mortality (estimated by inter-tree distances). As a first step towards testing this model in the cerrado, we tested this assumption in a single cerrado patch in southeastern Brazil. We placed 80 quadrats, each one with 25 m², in which we sampled all shrubs and trees. For each individual, we measured its height and the distance to its nearest neighbour - the inter-tree distance. We did not find correlations between tree height and both inter-tree distances and evenness of inter-tree distances, refuting the honeycomb rippling model. Inter-tree distances were spatially autocorrelated, but height was not. According to our results, the basic assumption of the model does not apply to seasonal savannas. If, in arid savannas, rainfall events are rare and unpredictable, in seasonal savannas, the rainy season is well-defined and rainfall is considerable. We found horizontal structuring in the community, which may be due to soil nutrient heterogeneity. The absence of vertical structuring suggests that competition for light among adult trees is not as important as competition for nutrients in the soil. We tested the basic assumption of the model in a single patch and at a single moment. To test the model effectively, we suggest this assumption to be tested in many patches over time.
id IIE-1_245282e0c8630062631b26bd2ea13e6e
oai_identifier_str oai:scielo:S1519-69842011000300009
network_acronym_str IIE-1
network_name_str Brazilian Journal of Biology
repository_id_str
spelling Towards testing the "honeycomb rippling model" in cerradocompetitionhoneycomb rippling modelpatch-dynamics modelsavannaspatial autocorrelationSavannas are tropical formations in which trees and grasses coexist. According to the "honeycomb rippling model", inter-tree competition leads to an effect of trees growing and dying due to competition, which, at fine spatial scale, would resemble honeycomb rippling. The model predicts that the taller the trees, the higher the inter-tree distances and the evenness of inter-tree distances. The model had been corroborated in arid savannas, in what appears to be caused by uneven distribution of rains, but had not yet been tested in seasonal savannas, such as the cerrado, which could be caused by the irregular occurrence of fire.A basic assumption of the model is that strong inter-tree competition affects growth (estimated by height) and mortality (estimated by inter-tree distances). As a first step towards testing this model in the cerrado, we tested this assumption in a single cerrado patch in southeastern Brazil. We placed 80 quadrats, each one with 25 m², in which we sampled all shrubs and trees. For each individual, we measured its height and the distance to its nearest neighbour - the inter-tree distance. We did not find correlations between tree height and both inter-tree distances and evenness of inter-tree distances, refuting the honeycomb rippling model. Inter-tree distances were spatially autocorrelated, but height was not. According to our results, the basic assumption of the model does not apply to seasonal savannas. If, in arid savannas, rainfall events are rare and unpredictable, in seasonal savannas, the rainy season is well-defined and rainfall is considerable. We found horizontal structuring in the community, which may be due to soil nutrient heterogeneity. The absence of vertical structuring suggests that competition for light among adult trees is not as important as competition for nutrients in the soil. We tested the basic assumption of the model in a single patch and at a single moment. To test the model effectively, we suggest this assumption to be tested in many patches over time.Instituto Internacional de Ecologia2011-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842011000300009Brazilian Journal of Biology v.71 n.2 2011reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE10.1590/S1519-69842011000300009info:eu-repo/semantics/openAccessGonçalves,CSBatalha,MAeng2011-07-15T00:00:00Zoai:scielo:S1519-69842011000300009Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2011-07-15T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false
dc.title.none.fl_str_mv Towards testing the "honeycomb rippling model" in cerrado
title Towards testing the "honeycomb rippling model" in cerrado
spellingShingle Towards testing the "honeycomb rippling model" in cerrado
Gonçalves,CS
competition
honeycomb rippling model
patch-dynamics model
savanna
spatial autocorrelation
title_short Towards testing the "honeycomb rippling model" in cerrado
title_full Towards testing the "honeycomb rippling model" in cerrado
title_fullStr Towards testing the "honeycomb rippling model" in cerrado
title_full_unstemmed Towards testing the "honeycomb rippling model" in cerrado
title_sort Towards testing the "honeycomb rippling model" in cerrado
author Gonçalves,CS
author_facet Gonçalves,CS
Batalha,MA
author_role author
author2 Batalha,MA
author2_role author
dc.contributor.author.fl_str_mv Gonçalves,CS
Batalha,MA
dc.subject.por.fl_str_mv competition
honeycomb rippling model
patch-dynamics model
savanna
spatial autocorrelation
topic competition
honeycomb rippling model
patch-dynamics model
savanna
spatial autocorrelation
description Savannas are tropical formations in which trees and grasses coexist. According to the "honeycomb rippling model", inter-tree competition leads to an effect of trees growing and dying due to competition, which, at fine spatial scale, would resemble honeycomb rippling. The model predicts that the taller the trees, the higher the inter-tree distances and the evenness of inter-tree distances. The model had been corroborated in arid savannas, in what appears to be caused by uneven distribution of rains, but had not yet been tested in seasonal savannas, such as the cerrado, which could be caused by the irregular occurrence of fire.A basic assumption of the model is that strong inter-tree competition affects growth (estimated by height) and mortality (estimated by inter-tree distances). As a first step towards testing this model in the cerrado, we tested this assumption in a single cerrado patch in southeastern Brazil. We placed 80 quadrats, each one with 25 m², in which we sampled all shrubs and trees. For each individual, we measured its height and the distance to its nearest neighbour - the inter-tree distance. We did not find correlations between tree height and both inter-tree distances and evenness of inter-tree distances, refuting the honeycomb rippling model. Inter-tree distances were spatially autocorrelated, but height was not. According to our results, the basic assumption of the model does not apply to seasonal savannas. If, in arid savannas, rainfall events are rare and unpredictable, in seasonal savannas, the rainy season is well-defined and rainfall is considerable. We found horizontal structuring in the community, which may be due to soil nutrient heterogeneity. The absence of vertical structuring suggests that competition for light among adult trees is not as important as competition for nutrients in the soil. We tested the basic assumption of the model in a single patch and at a single moment. To test the model effectively, we suggest this assumption to be tested in many patches over time.
publishDate 2011
dc.date.none.fl_str_mv 2011-05-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842011000300009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842011000300009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1519-69842011000300009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Internacional de Ecologia
publisher.none.fl_str_mv Instituto Internacional de Ecologia
dc.source.none.fl_str_mv Brazilian Journal of Biology v.71 n.2 2011
reponame:Brazilian Journal of Biology
instname:Instituto Internacional de Ecologia (IIE)
instacron:IIE
instname_str Instituto Internacional de Ecologia (IIE)
instacron_str IIE
institution IIE
reponame_str Brazilian Journal of Biology
collection Brazilian Journal of Biology
repository.name.fl_str_mv Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)
repository.mail.fl_str_mv bjb@bjb.com.br||bjb@bjb.com.br
_version_ 1752129878849748992