BPA toxicity during development of zebrafish embryo

Detalhes bibliográficos
Autor(a) principal: Scopel,C. F. V.
Data de Publicação: 2021
Outros Autores: Sousa,C., Machado,M. R. F., Santos,W. G. Dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842021000200437
Resumo: Abstract Bisphenol A (BPA) is a monomer used in the production of polycarbonate, a polymer commonly found in plastics, epoxy resins and thermal papers. The presence of BPA in food, water, air and dust has been of great concern in recent years not only due to environmental and ecological issues but also because of its supposed risk to public health related to its mutagenic and carcinogenic potential. In this study we evaluated the toxicity of bisphenol A in zebrafish embryos (Danio rerio) and determined the 50% lethal concentration (LC50) of this chemical. BPA was used at concentrations ranging from 1 μM to 100 μM in E3 medium/0.5% dimethylsulfoxide (DMSO) from previously prepared stock solutions in 100% DMSO. Controls included embryos exposed only to E3 medium or supplemented with 0.5% DMSO. Camptothecin (CPT), a known inhibitor of cell proliferation was used as positive control at a concentration of 0.001 μM in E3 medium/0.5% DMSO. Adults zebrafish were placed for breeding a day before the experimental set up, then, viable embryos were collected and selected for use. Experiments were carried out in triplicates, according to specifications from Organization for Economic Cooperation and Development (OECD). One embryo/well (25 embryos per concentration) was distributed in 96 well microplates in presence or absence of the chemicals. The plates were kept in BOD incubators with a controlled temperature of 28.5 ºC and with photoperiod of 14 h light:10 h dark. After 24h, 48h, 72h and 96h exposure, the exposed embryos were evaluated according to the following parameters: mortality, coagulation, rate of heartbeat, hatching and presence of morphological abnormalities. Photography was obtained by photomicroscopy. Apoptosis was evaluated by DNA ladder assay. DNA was extracted by phenol:chloroform method and analyzed by 2% agarose gel electrophoresis. DNA fragments were visualized after ethidium bromide staining in ultraviolet transilluminator. The LC50 determined for BPA was 70 μM after 24 hours, 72 μM after 48 hours, 47 μM after 72 hours and 31 μM after 96 hours exposure. BPA induced morphological and physiological alterations such as yolk sac and pericardial edema, hatching delay or inhibition, spine deformation, decreasing in heartbeat rate and mortality. In conclusion, this study demonstrated that BPA induced marked malformations in zebrafish embryos at concentrations above 25 μM corroborating the current concerns related to the widespread presence of BPA in the air, food and water used by humans as well as in the bodily fluids and tissues.
id IIE-1_4e9f85544e72af982bac11599e81ec71
oai_identifier_str oai:scielo:S1519-69842021000200437
network_acronym_str IIE-1
network_name_str Brazilian Journal of Biology
repository_id_str
spelling BPA toxicity during development of zebrafish embryobisphenoltoxicityembryogenesisAbstract Bisphenol A (BPA) is a monomer used in the production of polycarbonate, a polymer commonly found in plastics, epoxy resins and thermal papers. The presence of BPA in food, water, air and dust has been of great concern in recent years not only due to environmental and ecological issues but also because of its supposed risk to public health related to its mutagenic and carcinogenic potential. In this study we evaluated the toxicity of bisphenol A in zebrafish embryos (Danio rerio) and determined the 50% lethal concentration (LC50) of this chemical. BPA was used at concentrations ranging from 1 μM to 100 μM in E3 medium/0.5% dimethylsulfoxide (DMSO) from previously prepared stock solutions in 100% DMSO. Controls included embryos exposed only to E3 medium or supplemented with 0.5% DMSO. Camptothecin (CPT), a known inhibitor of cell proliferation was used as positive control at a concentration of 0.001 μM in E3 medium/0.5% DMSO. Adults zebrafish were placed for breeding a day before the experimental set up, then, viable embryos were collected and selected for use. Experiments were carried out in triplicates, according to specifications from Organization for Economic Cooperation and Development (OECD). One embryo/well (25 embryos per concentration) was distributed in 96 well microplates in presence or absence of the chemicals. The plates were kept in BOD incubators with a controlled temperature of 28.5 ºC and with photoperiod of 14 h light:10 h dark. After 24h, 48h, 72h and 96h exposure, the exposed embryos were evaluated according to the following parameters: mortality, coagulation, rate of heartbeat, hatching and presence of morphological abnormalities. Photography was obtained by photomicroscopy. Apoptosis was evaluated by DNA ladder assay. DNA was extracted by phenol:chloroform method and analyzed by 2% agarose gel electrophoresis. DNA fragments were visualized after ethidium bromide staining in ultraviolet transilluminator. The LC50 determined for BPA was 70 μM after 24 hours, 72 μM after 48 hours, 47 μM after 72 hours and 31 μM after 96 hours exposure. BPA induced morphological and physiological alterations such as yolk sac and pericardial edema, hatching delay or inhibition, spine deformation, decreasing in heartbeat rate and mortality. In conclusion, this study demonstrated that BPA induced marked malformations in zebrafish embryos at concentrations above 25 μM corroborating the current concerns related to the widespread presence of BPA in the air, food and water used by humans as well as in the bodily fluids and tissues.Instituto Internacional de Ecologia2021-05-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842021000200437Brazilian Journal of Biology v.81 n.2 2021reponame:Brazilian Journal of Biologyinstname:Instituto Internacional de Ecologia (IIE)instacron:IIE10.1590/1519-6984.230562info:eu-repo/semantics/openAccessScopel,C. F. V.Sousa,C.Machado,M. R. F.Santos,W. G. Doseng2021-02-05T00:00:00Zoai:scielo:S1519-69842021000200437Revistahttps://www.scielo.br/j/bjb/https://old.scielo.br/oai/scielo-oai.phpbjb@bjb.com.br||bjb@bjb.com.br1678-43751519-6984opendoar:2021-02-05T00:00Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)false
dc.title.none.fl_str_mv BPA toxicity during development of zebrafish embryo
title BPA toxicity during development of zebrafish embryo
spellingShingle BPA toxicity during development of zebrafish embryo
Scopel,C. F. V.
bisphenol
toxicity
embryogenesis
title_short BPA toxicity during development of zebrafish embryo
title_full BPA toxicity during development of zebrafish embryo
title_fullStr BPA toxicity during development of zebrafish embryo
title_full_unstemmed BPA toxicity during development of zebrafish embryo
title_sort BPA toxicity during development of zebrafish embryo
author Scopel,C. F. V.
author_facet Scopel,C. F. V.
Sousa,C.
Machado,M. R. F.
Santos,W. G. Dos
author_role author
author2 Sousa,C.
Machado,M. R. F.
Santos,W. G. Dos
author2_role author
author
author
dc.contributor.author.fl_str_mv Scopel,C. F. V.
Sousa,C.
Machado,M. R. F.
Santos,W. G. Dos
dc.subject.por.fl_str_mv bisphenol
toxicity
embryogenesis
topic bisphenol
toxicity
embryogenesis
description Abstract Bisphenol A (BPA) is a monomer used in the production of polycarbonate, a polymer commonly found in plastics, epoxy resins and thermal papers. The presence of BPA in food, water, air and dust has been of great concern in recent years not only due to environmental and ecological issues but also because of its supposed risk to public health related to its mutagenic and carcinogenic potential. In this study we evaluated the toxicity of bisphenol A in zebrafish embryos (Danio rerio) and determined the 50% lethal concentration (LC50) of this chemical. BPA was used at concentrations ranging from 1 μM to 100 μM in E3 medium/0.5% dimethylsulfoxide (DMSO) from previously prepared stock solutions in 100% DMSO. Controls included embryos exposed only to E3 medium or supplemented with 0.5% DMSO. Camptothecin (CPT), a known inhibitor of cell proliferation was used as positive control at a concentration of 0.001 μM in E3 medium/0.5% DMSO. Adults zebrafish were placed for breeding a day before the experimental set up, then, viable embryos were collected and selected for use. Experiments were carried out in triplicates, according to specifications from Organization for Economic Cooperation and Development (OECD). One embryo/well (25 embryos per concentration) was distributed in 96 well microplates in presence or absence of the chemicals. The plates were kept in BOD incubators with a controlled temperature of 28.5 ºC and with photoperiod of 14 h light:10 h dark. After 24h, 48h, 72h and 96h exposure, the exposed embryos were evaluated according to the following parameters: mortality, coagulation, rate of heartbeat, hatching and presence of morphological abnormalities. Photography was obtained by photomicroscopy. Apoptosis was evaluated by DNA ladder assay. DNA was extracted by phenol:chloroform method and analyzed by 2% agarose gel electrophoresis. DNA fragments were visualized after ethidium bromide staining in ultraviolet transilluminator. The LC50 determined for BPA was 70 μM after 24 hours, 72 μM after 48 hours, 47 μM after 72 hours and 31 μM after 96 hours exposure. BPA induced morphological and physiological alterations such as yolk sac and pericardial edema, hatching delay or inhibition, spine deformation, decreasing in heartbeat rate and mortality. In conclusion, this study demonstrated that BPA induced marked malformations in zebrafish embryos at concentrations above 25 μM corroborating the current concerns related to the widespread presence of BPA in the air, food and water used by humans as well as in the bodily fluids and tissues.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842021000200437
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842021000200437
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1519-6984.230562
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Internacional de Ecologia
publisher.none.fl_str_mv Instituto Internacional de Ecologia
dc.source.none.fl_str_mv Brazilian Journal of Biology v.81 n.2 2021
reponame:Brazilian Journal of Biology
instname:Instituto Internacional de Ecologia (IIE)
instacron:IIE
instname_str Instituto Internacional de Ecologia (IIE)
instacron_str IIE
institution IIE
reponame_str Brazilian Journal of Biology
collection Brazilian Journal of Biology
repository.name.fl_str_mv Brazilian Journal of Biology - Instituto Internacional de Ecologia (IIE)
repository.mail.fl_str_mv bjb@bjb.com.br||bjb@bjb.com.br
_version_ 1752129887993331712