Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da INATEL |
Texto Completo: | https://tede.inatel.br:8080/tede/handle/tede/257 |
Resumo: | Future mobile networks will provide a wide variety of new applications and use cases. In this context, a significant demand for high data rate and reliability will be driven to support all new emerging services. Many of these services have different requirements, which can lead to divergent decisions being taken according to the same indicator. Using the modulation and coding parameters defined by the Modulation and Coding Scheme (MCS) index as an example, the system option must result in a number of errors lower than a limit condition when the requirement is reliability. On the other hand, if the service demands a high data rate, the MCS index must be as close as possible to the point of highest spectral efficiency that still reaches a less severe maximum target of error rate. But in either case, the link status indicator needs a very accurate estimation. The elementary indicator is the measure that represents the interference level and noise compared to the sent signal. Since the calculation of this elementary indicator still requires improvements in the current methods, a strategy presented in this work implements a complementary indi cator that generates not only more precise information but also considers the imper fections of all processes involved in the signal reception. In the pursuit of state-of-the art, it is clear that the implementation particularities in signal processing algorithms, hardware characteristics, quantization, and many other factors present in the reception process must be included. Moreover, the decision-making process is also a complex task as it involves man aging multiple users being added and leaving the system at any given time. In this scenario, there is an increasing heterogeneity of services and different demands to be accommodated. With as much information as possible, the process called Link Adap tation (LA) can be appropriately implemented. For the best efficiency of link adaptation, this work is based on these three topics, presenting strategies for each one of them: a proposal for improving the estimation of the elementary indicator (signal-to-noise ratio), the creation of a complementary indi cator and more systemic considerations for the control itself. In addition, the research looking for methods to increase precision and efficiency brought the employment of machine learning techniques as a primary strategy, which has shown remarkable results in many diverse areas. Keyords: Link Adaptation, Adaptive Coding and Modulation, 6G, Machine Learning, Reliability |
id |
INAT_0deaa7a4f271e1819251560467c295b7 |
---|---|
oai_identifier_str |
oai:localhost:tede/257 |
network_acronym_str |
INAT |
network_name_str |
Biblioteca Digital de Teses e Dissertações da INATEL |
repository_id_str |
|
spelling |
Figueiredo, Felipe Augusto Pereira0188611850092267http://lattes.cnpq.br/0188611850092267Figueiredo, Felipe Augusto Pereira0188611850092267http://lattes.cnpq.br/0188611850092267Cardoso, Fabbryccio Akkazzha Chaves Machado7415386096240061http://lattes.cnpq.br/7415386096240061Mafra, Samuel Baraldi9492423249629649http://lattes.cnpq.br/94924232496296495053179605942088http://lattes.cnpq.br/5053179605942088Kagami, Roberto Michio2024-05-17T18:04:07Z2023-10-06Kagami, Roberto Michio. Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning. 2023. [29 p.]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [Santa Rita do Sapuca??].https://tede.inatel.br:8080/tede/handle/tede/257Future mobile networks will provide a wide variety of new applications and use cases. In this context, a significant demand for high data rate and reliability will be driven to support all new emerging services. Many of these services have different requirements, which can lead to divergent decisions being taken according to the same indicator. Using the modulation and coding parameters defined by the Modulation and Coding Scheme (MCS) index as an example, the system option must result in a number of errors lower than a limit condition when the requirement is reliability. On the other hand, if the service demands a high data rate, the MCS index must be as close as possible to the point of highest spectral efficiency that still reaches a less severe maximum target of error rate. But in either case, the link status indicator needs a very accurate estimation. The elementary indicator is the measure that represents the interference level and noise compared to the sent signal. Since the calculation of this elementary indicator still requires improvements in the current methods, a strategy presented in this work implements a complementary indi cator that generates not only more precise information but also considers the imper fections of all processes involved in the signal reception. In the pursuit of state-of-the art, it is clear that the implementation particularities in signal processing algorithms, hardware characteristics, quantization, and many other factors present in the reception process must be included. Moreover, the decision-making process is also a complex task as it involves man aging multiple users being added and leaving the system at any given time. In this scenario, there is an increasing heterogeneity of services and different demands to be accommodated. With as much information as possible, the process called Link Adap tation (LA) can be appropriately implemented. For the best efficiency of link adaptation, this work is based on these three topics, presenting strategies for each one of them: a proposal for improving the estimation of the elementary indicator (signal-to-noise ratio), the creation of a complementary indi cator and more systemic considerations for the control itself. In addition, the research looking for methods to increase precision and efficiency brought the employment of machine learning techniques as a primary strategy, which has shown remarkable results in many diverse areas. Keyords: Link Adaptation, Adaptive Coding and Modulation, 6G, Machine Learning, ReliabilityAs futuras redes moveis fornecer ?? ao uma ampla variedade de novas aplica????es e casos de uso. Neste contexto, ser?? impulsionada uma demanda significativa de taxa de dados e confiabilidade para que sejam suportados todos os novos servi??os emergentes. Muitos destes servi??os apresentam requisitos distintos, o que pode levar a decis??es divergentes a serem tomadas de acordo com um mesmo indicador. Por exemplo, definindo os par??metros da camada f??sica de modula????o e codifica????o atrav??s do ??ndice Modulation and Coding Scheme, esta op????o do sistema deve resultar em uma quantidade de erros inferior a uma condi????o limite quando o requisito e confiabilidade. Por outro lado, se o servi??o demandar uma alta taxa de dados, o ??ndice MCS deve estar o mais pr??ximo poss??vel do ponto de maior efici??ncia espectral que ainda atinge uma meta m??xima de taxa de erros menos severa. Mas em quaisquer dos casos, o indicador precisa de uma estimativa muito precisa do estado real do enlace. O indicador elementar e, ent??o, a medida que representa o grau de interfer??ncia e de ru??do em rela????o ao sinal enviado. Dado que o c??lculo deste indicador elementar ainda necessita de melhorias nos atuais m??todos que tem sido utilizados, uma estrat??gia que se apresenta e o da implementa????o de um indicador complementar que gere uma informa????o, n??o somente mais precisa, mas tamb??m que considere todos os elementos presentes nos processos de recep????o?? ao do sinal. Para uma aproxima????o maior do que se pode chamar de estado da arte, torna-se claro que devem tamb??m ser levadas em conta as particularidades de implementa????o em termos de algoritmos de processamento de sinais, caracter??sticas de hardware, quantiza????o e tantos outros fatores presentes no processo de recep????o. Ainda assim, o controle na tomada de decis??es ?? complexo, pois envolve o gerenciamento de v??rios usu??rios sendo adicionados e deixando o sistema a todo momento. Al??m disso, h?? cada vez mais uma heterogeneidade maior de servi??os e diferentes demandas a serem acomodadas. De posse do maior n??mero poss??vel de informa????es, ?? poss??vel melhor implementar o que e chamado de adapta????o de enlace. Para a melhor efici??ncia da adapta????o do enlace, este trabalho tem como pilares estes tr??s t??picos, propondo estrat??gias para cada um deles: uma proposta para a melhoria da estima????o do indicador elementar (rela????o sinal-ru??do), a cria????o de um indicador complementar e propostas mais sist??micas para o controle propriamente dito. Al??m disso, a pesquisa por m??todos visando o aumento de precis??o e de efici??ncia apontou como principal estrat??gia a utiliza????o de t??cnicas de aprendizado de m??quina, que tem demonstrado not??veis resultados nas mais diversas ??reas.Submitted by Tede Dspace (tede@inatel.br) on 2024-05-17T18:03:55Z No. of bitstreams: 1 Disserta????o_de_Mestrado_Roberto_Kagami.pdf: 4161719 bytes, checksum: cd88f79c80af114a02b5653e54e811ac (MD5)Made available in DSpace on 2024-05-17T18:04:07Z (GMT). No. of bitstreams: 1 Disserta????o_de_Mestrado_Roberto_Kagami.pdf: 4161719 bytes, checksum: cd88f79c80af114a02b5653e54e811ac (MD5) Previous issue date: 2023-10-06application/pdfhttp://tede.inatel.br:8080/jspui/retrieve/2012/Disserta%c3%a7%c3%a3o_de_Mestrado_Roberto_Kagami.pdf.jpgporInstituto Nacional de Telecomunica????esMestrado em Engenharia de Telecomunica????esINATELBrasilInstituto Nacional de Telecomunica????esAdapta????o de Enlace; Codifica????o e Modula????o adaptativa, 6G; Aprendizado de M??quina; ConfiabilidadeEngenharia - Telecomunica????esLink Adaptation Techniques Based on Inner Receiver Statistics and Machine Learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da INATELinstname:Instituto Nacional de Telecomunicações (INATEL)instacron:INATELLICENSElicense.txtlicense.txttext/plain; charset=utf-850http://localhost:8080/tede/bitstream/tede/257/1/license.txtad97de64637545abb37de9243411913cMD51ORIGINALDisserta????o_de_Mestrado_Roberto_Kagami.pdfDisserta????o_de_Mestrado_Roberto_Kagami.pdfapplication/pdf4161719http://localhost:8080/tede/bitstream/tede/257/2/Disserta%C3%A7%C3%A3o_de_Mestrado_Roberto_Kagami.pdfcd88f79c80af114a02b5653e54e811acMD52TEXTDisserta????o_de_Mestrado_Roberto_Kagami.pdf.txtDisserta????o_de_Mestrado_Roberto_Kagami.pdf.txttext/plain171364http://localhost:8080/tede/bitstream/tede/257/3/Disserta%C3%A7%C3%A3o_de_Mestrado_Roberto_Kagami.pdf.txt4a8b435eb4cfd6c81168f371cb3e8612MD53THUMBNAILDisserta????o_de_Mestrado_Roberto_Kagami.pdf.jpgDisserta????o_de_Mestrado_Roberto_Kagami.pdf.jpgimage/jpeg4133http://localhost:8080/tede/bitstream/tede/257/4/Disserta%C3%A7%C3%A3o_de_Mestrado_Roberto_Kagami.pdf.jpg23937d82f0433917ce8e4fcda8e4f8b8MD54tede/2572024-05-18 01:00:09.149oai:localhost:tede/257aHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLy4=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.inatel.br:8080/jspui/PUBhttp://tede.inatel.br:8080/oai/requestbiblioteca@inatel.br || biblioteca.atendimento@inatel.bropendoar:2024-05-18T04:00:09Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL)false |
dc.title.por.fl_str_mv |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
title |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
spellingShingle |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning Kagami, Roberto Michio Adapta????o de Enlace; Codifica????o e Modula????o adaptativa, 6G; Aprendizado de M??quina; Confiabilidade Engenharia - Telecomunica????es |
title_short |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
title_full |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
title_fullStr |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
title_full_unstemmed |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
title_sort |
Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning |
author |
Kagami, Roberto Michio |
author_facet |
Kagami, Roberto Michio |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Figueiredo, Felipe Augusto Pereira |
dc.contributor.advisor1ID.fl_str_mv |
0188611850092267 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0188611850092267 |
dc.contributor.referee1.fl_str_mv |
Figueiredo, Felipe Augusto Pereira |
dc.contributor.referee1ID.fl_str_mv |
0188611850092267 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0188611850092267 |
dc.contributor.referee2.fl_str_mv |
Cardoso, Fabbryccio Akkazzha Chaves Machado |
dc.contributor.referee2ID.fl_str_mv |
7415386096240061 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/7415386096240061 |
dc.contributor.referee3.fl_str_mv |
Mafra, Samuel Baraldi |
dc.contributor.referee3ID.fl_str_mv |
9492423249629649 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/9492423249629649 |
dc.contributor.authorID.fl_str_mv |
5053179605942088 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5053179605942088 |
dc.contributor.author.fl_str_mv |
Kagami, Roberto Michio |
contributor_str_mv |
Figueiredo, Felipe Augusto Pereira Figueiredo, Felipe Augusto Pereira Cardoso, Fabbryccio Akkazzha Chaves Machado Mafra, Samuel Baraldi |
dc.subject.por.fl_str_mv |
Adapta????o de Enlace; Codifica????o e Modula????o adaptativa, 6G; Aprendizado de M??quina; Confiabilidade |
topic |
Adapta????o de Enlace; Codifica????o e Modula????o adaptativa, 6G; Aprendizado de M??quina; Confiabilidade Engenharia - Telecomunica????es |
dc.subject.cnpq.fl_str_mv |
Engenharia - Telecomunica????es |
description |
Future mobile networks will provide a wide variety of new applications and use cases. In this context, a significant demand for high data rate and reliability will be driven to support all new emerging services. Many of these services have different requirements, which can lead to divergent decisions being taken according to the same indicator. Using the modulation and coding parameters defined by the Modulation and Coding Scheme (MCS) index as an example, the system option must result in a number of errors lower than a limit condition when the requirement is reliability. On the other hand, if the service demands a high data rate, the MCS index must be as close as possible to the point of highest spectral efficiency that still reaches a less severe maximum target of error rate. But in either case, the link status indicator needs a very accurate estimation. The elementary indicator is the measure that represents the interference level and noise compared to the sent signal. Since the calculation of this elementary indicator still requires improvements in the current methods, a strategy presented in this work implements a complementary indi cator that generates not only more precise information but also considers the imper fections of all processes involved in the signal reception. In the pursuit of state-of-the art, it is clear that the implementation particularities in signal processing algorithms, hardware characteristics, quantization, and many other factors present in the reception process must be included. Moreover, the decision-making process is also a complex task as it involves man aging multiple users being added and leaving the system at any given time. In this scenario, there is an increasing heterogeneity of services and different demands to be accommodated. With as much information as possible, the process called Link Adap tation (LA) can be appropriately implemented. For the best efficiency of link adaptation, this work is based on these three topics, presenting strategies for each one of them: a proposal for improving the estimation of the elementary indicator (signal-to-noise ratio), the creation of a complementary indi cator and more systemic considerations for the control itself. In addition, the research looking for methods to increase precision and efficiency brought the employment of machine learning techniques as a primary strategy, which has shown remarkable results in many diverse areas. Keyords: Link Adaptation, Adaptive Coding and Modulation, 6G, Machine Learning, Reliability |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-10-06 |
dc.date.accessioned.fl_str_mv |
2024-05-17T18:04:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Kagami, Roberto Michio. Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning. 2023. [29 p.]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [Santa Rita do Sapuca??]. |
dc.identifier.uri.fl_str_mv |
https://tede.inatel.br:8080/tede/handle/tede/257 |
identifier_str_mv |
Kagami, Roberto Michio. Link Adaptation Techniques Based on Inner Receiver Statistics and Machine Learning. 2023. [29 p.]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [Santa Rita do Sapuca??]. |
url |
https://tede.inatel.br:8080/tede/handle/tede/257 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Telecomunica????es |
dc.publisher.program.fl_str_mv |
Mestrado em Engenharia de Telecomunica????es |
dc.publisher.initials.fl_str_mv |
INATEL |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto Nacional de Telecomunica????es |
publisher.none.fl_str_mv |
Instituto Nacional de Telecomunica????es |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da INATEL instname:Instituto Nacional de Telecomunicações (INATEL) instacron:INATEL |
instname_str |
Instituto Nacional de Telecomunicações (INATEL) |
instacron_str |
INATEL |
institution |
INATEL |
reponame_str |
Biblioteca Digital de Teses e Dissertações da INATEL |
collection |
Biblioteca Digital de Teses e Dissertações da INATEL |
bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/257/1/license.txt http://localhost:8080/tede/bitstream/tede/257/2/Disserta%C3%A7%C3%A3o_de_Mestrado_Roberto_Kagami.pdf http://localhost:8080/tede/bitstream/tede/257/3/Disserta%C3%A7%C3%A3o_de_Mestrado_Roberto_Kagami.pdf.txt http://localhost:8080/tede/bitstream/tede/257/4/Disserta%C3%A7%C3%A3o_de_Mestrado_Roberto_Kagami.pdf.jpg |
bitstream.checksum.fl_str_mv |
ad97de64637545abb37de9243411913c cd88f79c80af114a02b5653e54e811ac 4a8b435eb4cfd6c81168f371cb3e8612 23937d82f0433917ce8e4fcda8e4f8b8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL) |
repository.mail.fl_str_mv |
biblioteca@inatel.br || biblioteca.atendimento@inatel.br |
_version_ |
1800214191953412096 |