An IoT-based face recognition solution using a residual network model for deep metric learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da INATEL |
Texto Completo: | https://tede.inatel.br:8080/tede/handle/tede/212 |
Resumo: | Biometric identification has been widely used in recent years, mainly because they represent more secure authentication systems than conventional ones. In this context, facial recognition is highlighted since it allows detecting and recognizing a person in real-time for their facial characteristics. This technology is particularly important and used in many applications such as smart surveillance. The evolution in surveillance technologies, thanks to Internet of Things (IoT), allows greater automation of this process since many monitoring functions performed by people can be replaced by realtime recognition techniques, turning the system even smarter, giving more information to the user, or increasing security in monitoring environments. It is noted that society is at a point where different types of technologies are converging and adding up. It is known that computer vision techniques are being incorporated into surveillance systems and deep learning models have proven innovative in solving various visual recognition problems. In this sense, this dissertation proposes a surveillance system, which uses these techniques to identify the individuals present in the vision field of a camera through a combination including Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), and a deep learning model, called ResNet (Residual Network). The set of detection and recognition techniques was deployed in a hardware with limited processing power, quite common in IoT devices. The idea is to demonstrate that even under these conditions, the proposed architecture still manages to work with high precision and in real-time. To achieve the proposed objective, experiments were carried out in different scenarios to verify the accuracy and robustness of the techniques adopted under different conditions. Two techniques were used in the detection scenario, but only one was carried out in the experiments since it consumes 20 times less processing time when compared to the second. The accuracy of the ResNet model used reached about 99.38% in the Labeled Faces in the Wild (LFW) Benchmark while it manages to deliver a rate of 1-3 fps (frames per second), showing excellent results, especially considering an embedded system. The performance evaluation of the system against different types of noise showed high invariability with darkening of the images and high precision and robustness against blur type interference. |
id |
INAT_4d59d834ef3b6e642a9c9da93b44e103 |
---|---|
oai_identifier_str |
oai:localhost:tede/212 |
network_acronym_str |
INAT |
network_name_str |
Biblioteca Digital de Teses e Dissertações da INATEL |
repository_id_str |
|
spelling |
Mafra, Samuel Baraldi056.666.329-57http://lattes.cnpq.br/9492423249629649Rodrigues, Joel Jos?? Puga Coelhohttp://lattes.cnpq.br/2907270080464933http://lattes.cnpq.br/2907270080464933Mafra , Samuel Baraldi056.666.329-57http://lattes.cnpq.br/9492423249629649Rodrigues, Joel Jos?? Puga Coelho621.466.243-37http://lattes.cnpq.br/2907270080464933Carvalho Filho, Ant??nio Oseas dehttp://lattes.cnpq.br/7913655222849728Figueiredo, Felipe Augusto Pereira de051.996.986-30http://lattes.cnpq.br/0188611850092267Brito, Jos?? Marcos C??mara495.450.866-53http://lattes.cnpq.br/0370383210890132070.347.076-00Teixeira, Eduardo Henrique2021-03-11T18:27:55Z2021-01-11Teixeira, Eduardo Henrique. An IoT-based face recognition solution using a residual network model for deep metric learning. 2021. [110]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [ Santa Rita do Sapucai] .https://tede.inatel.br:8080/tede/handle/tede/212Biometric identification has been widely used in recent years, mainly because they represent more secure authentication systems than conventional ones. In this context, facial recognition is highlighted since it allows detecting and recognizing a person in real-time for their facial characteristics. This technology is particularly important and used in many applications such as smart surveillance. The evolution in surveillance technologies, thanks to Internet of Things (IoT), allows greater automation of this process since many monitoring functions performed by people can be replaced by realtime recognition techniques, turning the system even smarter, giving more information to the user, or increasing security in monitoring environments. It is noted that society is at a point where different types of technologies are converging and adding up. It is known that computer vision techniques are being incorporated into surveillance systems and deep learning models have proven innovative in solving various visual recognition problems. In this sense, this dissertation proposes a surveillance system, which uses these techniques to identify the individuals present in the vision field of a camera through a combination including Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), and a deep learning model, called ResNet (Residual Network). The set of detection and recognition techniques was deployed in a hardware with limited processing power, quite common in IoT devices. The idea is to demonstrate that even under these conditions, the proposed architecture still manages to work with high precision and in real-time. To achieve the proposed objective, experiments were carried out in different scenarios to verify the accuracy and robustness of the techniques adopted under different conditions. Two techniques were used in the detection scenario, but only one was carried out in the experiments since it consumes 20 times less processing time when compared to the second. The accuracy of the ResNet model used reached about 99.38% in the Labeled Faces in the Wild (LFW) Benchmark while it manages to deliver a rate of 1-3 fps (frames per second), showing excellent results, especially considering an embedded system. The performance evaluation of the system against different types of noise showed high invariability with darkening of the images and high precision and robustness against blur type interference.A identifica????o biom??trica tem sido amplamente utilizada nos ??ltimos anos, principalmente por representar sistemas de autentica????o mais seguros que os convencionais. Neste contexto, destaca-se o reconhecimento facial que permite detectar e reconhecer uma pessoa, em tempo real, pelas suas caracter??sticas faciais. Essa tecnologia ?? particularmente importante e usada em muitas aplica????es, como vigil??ncia inteligente. A evolu????o das tecnologias de vigil??ncia, gra??as ?? Internet das coisas (do Ingl??s, Internet of Things ??? IoT), permite maior automa????o desse processo, j?? que grande parte das fun????es de monitoramento desempenhadas por um ser humano podem ser substitu??das por t??cnicas de reconhecimento, tornando o sistema ainda mais inteligente, dando mais informa????es ao usu??rio ou aumentando a seguran??a em ambientes de monitoramento. Nota-se que nossa sociedade est?? em um ponto em que diferentes tipos de tecnologias est??o convergindo, as t??cnicas de vis??o computacional est??o sendo incorporadas aos sistemas de vigil??ncia e que os modelos de aprendizado profundo t??m se mostrado inovadores na solu????o de diversos problemas de reconhecimento visual. Nesse sentido, esta disserta????o prop??e a constru????o de um sistema de vigil??ncia que utiliza essas t??cnicas para identificar os indiv??duos presentes no campo de vis??o da c??mera por meio de uma combina????o de Histograma de Gradiente Orientado, M??quina de Vetores de Suporte e o modelo de aprendizagem profunda, ResNet. O conjunto de t??cnicas de detec????o e reconhecimento foi implementado em um hardware com poder de processamento limitado, muito comum em dispositivos IoT. A ideia ?? demonstrar que mesmo nessas condi????es, a arquitetura proposta ainda consegue trabalhar com alta precis??o e em tempo real. Para avaliar o desempenho da solu????o proposta para atingir o objetivo deste estudo, foram realizados experimentos em diferentes cen??rios para verificar a precis??o e robustez das t??cnicas adotadas nas diferentes condi????es. Duas t??cnicas foram empregadas no cen??rio de detec????o, por??m apenas uma foi levada adiante nos experimentos devido ao fato de consumir 20 vezes menos tempo de processamento em compara????o com a segunda. A xiv precis??o do modelo ResNet utilizado alcan??ou 99,38% no LFW (do ingl??s, Labeled Faces in the Wild) Benchmark, enquanto consegue entregar uma taxa de 1-3 fps (do ingl??s, frames per second), apresentando ??timos resultados, principalmente levando em considera????o um sistema embarcado. A avalia????o do sistema contra diferentes tipos de ru??do demostrou alta invariabilidade com escurecimento das imagens e alta precis??o e robustez contra interfer??ncia do tipo ???blur???.Submitted by Tede Dspace (tede@inatel.br) on 2021-03-11T18:27:54Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Disserta????o V.Final Eduardo Henrique Teixeira - 2021.pdf: 2624633 bytes, checksum: 3231efdd7fab1d1c7ecfb5a677ca3f9c (MD5)Made available in DSpace on 2021-03-11T18:27:55Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Disserta????o V.Final Eduardo Henrique Teixeira - 2021.pdf: 2624633 bytes, checksum: 3231efdd7fab1d1c7ecfb5a677ca3f9c (MD5) Previous issue date: 2021-01-11application/pdfhttp://tede.inatel.br:8080/jspui/retrieve/1677/Disserta%c3%a7%c3%a3o%20V.Final%20Eduardo%20Henrique%20Teixeira%20-%202021.pdf.jpgengInstituto Nacional de Telecomunica????esMestrado em Engenharia de Telecomunica????esINATELBrasilInstituto Nacional de Telecomunica????eshttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccessInternet das Coisas; Reconhecimento Facial; ResNet; Aprendizado M??trico Profundo; Precis??o; Computa????o de BordaInternet of Things; Face Recognition; ResNet; Deep Metric Learning; Accuracy; Edge ComputingEngenharia - Telecomunica????esAn IoT-based face recognition solution using a residual network model for deep metric learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Biblioteca Digital de Teses e Dissertações da INATELinstname:Instituto Nacional de Telecomunicações (INATEL)instacron:INATELLICENSElicense.txtlicense.txttext/plain; charset=utf-8112http://localhost:8080/tede/bitstream/tede/212/1/license.txtc6279291b293f0db82678eaa73a27769MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-846http://localhost:8080/tede/bitstream/tede/212/2/license_url587cd8ffae15c8598ed3c46d248a3f38MD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/tede/bitstream/tede/212/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/tede/bitstream/tede/212/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDisserta????o V.Final Eduardo Henrique Teixeira - 2021.pdfDisserta????o V.Final Eduardo Henrique Teixeira - 2021.pdfapplication/pdf2624633http://localhost:8080/tede/bitstream/tede/212/5/Disserta%C3%A7%C3%A3o+V.Final+Eduardo+Henrique+Teixeira+-+2021.pdf3231efdd7fab1d1c7ecfb5a677ca3f9cMD55TEXTDisserta????o V.Final Eduardo Henrique Teixeira - 2021.pdf.txtDisserta????o V.Final Eduardo Henrique Teixeira - 2021.pdf.txttext/plain150296http://localhost:8080/tede/bitstream/tede/212/6/Disserta%C3%A7%C3%A3o+V.Final+Eduardo+Henrique+Teixeira+-+2021.pdf.txtd871e740a94f4cc1721c351669f26226MD56THUMBNAILDisserta????o V.Final Eduardo Henrique Teixeira - 2021.pdf.jpgDisserta????o V.Final Eduardo Henrique Teixeira - 2021.pdf.jpgimage/jpeg4308http://localhost:8080/tede/bitstream/tede/212/7/Disserta%C3%A7%C3%A3o+V.Final+Eduardo+Henrique+Teixeira+-+2021.pdf.jpgf29dc098dfc1e88b9936704770fb8f33MD57tede/2122021-04-16 08:04:32.773oai:localhost:tede/212QXV0b3Jpem8gYSBwdWJsaWNhPz9vIGRhIG1pbmhhIERpc3NlcnRhPz9vIGRlIE1lc3RyYWRvLCBlbSBmb3JtYXRvIFBERiwgY29tIGJsb3F1ZWlvIGRlIGVkaT8/bywgY29sYWdlbSBlIGM/cGlhLg==Biblioteca Digital de Teses e Dissertaçõeshttp://tede.inatel.br:8080/jspui/PUBhttp://tede.inatel.br:8080/oai/requestbiblioteca@inatel.br || biblioteca.atendimento@inatel.bropendoar:2021-04-16T11:04:32Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL)false |
dc.title.por.fl_str_mv |
An IoT-based face recognition solution using a residual network model for deep metric learning |
title |
An IoT-based face recognition solution using a residual network model for deep metric learning |
spellingShingle |
An IoT-based face recognition solution using a residual network model for deep metric learning Teixeira, Eduardo Henrique Internet das Coisas; Reconhecimento Facial; ResNet; Aprendizado M??trico Profundo; Precis??o; Computa????o de Borda Internet of Things; Face Recognition; ResNet; Deep Metric Learning; Accuracy; Edge Computing Engenharia - Telecomunica????es |
title_short |
An IoT-based face recognition solution using a residual network model for deep metric learning |
title_full |
An IoT-based face recognition solution using a residual network model for deep metric learning |
title_fullStr |
An IoT-based face recognition solution using a residual network model for deep metric learning |
title_full_unstemmed |
An IoT-based face recognition solution using a residual network model for deep metric learning |
title_sort |
An IoT-based face recognition solution using a residual network model for deep metric learning |
author |
Teixeira, Eduardo Henrique |
author_facet |
Teixeira, Eduardo Henrique |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Mafra, Samuel Baraldi |
dc.contributor.advisor1ID.fl_str_mv |
056.666.329-57 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9492423249629649 |
dc.contributor.advisor-co1.fl_str_mv |
Rodrigues, Joel Jos?? Puga Coelho |
dc.contributor.advisor-co1ID.fl_str_mv |
http://lattes.cnpq.br/2907270080464933 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2907270080464933 |
dc.contributor.referee1.fl_str_mv |
Mafra , Samuel Baraldi |
dc.contributor.referee1ID.fl_str_mv |
056.666.329-57 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9492423249629649 |
dc.contributor.referee2.fl_str_mv |
Rodrigues, Joel Jos?? Puga Coelho |
dc.contributor.referee2ID.fl_str_mv |
621.466.243-37 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2907270080464933 |
dc.contributor.referee3.fl_str_mv |
Carvalho Filho, Ant??nio Oseas de |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7913655222849728 |
dc.contributor.referee4.fl_str_mv |
Figueiredo, Felipe Augusto Pereira de |
dc.contributor.referee4ID.fl_str_mv |
051.996.986-30 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/0188611850092267 |
dc.contributor.referee5.fl_str_mv |
Brito, Jos?? Marcos C??mara |
dc.contributor.referee5ID.fl_str_mv |
495.450.866-53 |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/0370383210890132 |
dc.contributor.authorID.fl_str_mv |
070.347.076-00 |
dc.contributor.author.fl_str_mv |
Teixeira, Eduardo Henrique |
contributor_str_mv |
Mafra, Samuel Baraldi Rodrigues, Joel Jos?? Puga Coelho Mafra , Samuel Baraldi Rodrigues, Joel Jos?? Puga Coelho Carvalho Filho, Ant??nio Oseas de Figueiredo, Felipe Augusto Pereira de Brito, Jos?? Marcos C??mara |
dc.subject.por.fl_str_mv |
Internet das Coisas; Reconhecimento Facial; ResNet; Aprendizado M??trico Profundo; Precis??o; Computa????o de Borda |
topic |
Internet das Coisas; Reconhecimento Facial; ResNet; Aprendizado M??trico Profundo; Precis??o; Computa????o de Borda Internet of Things; Face Recognition; ResNet; Deep Metric Learning; Accuracy; Edge Computing Engenharia - Telecomunica????es |
dc.subject.eng.fl_str_mv |
Internet of Things; Face Recognition; ResNet; Deep Metric Learning; Accuracy; Edge Computing |
dc.subject.cnpq.fl_str_mv |
Engenharia - Telecomunica????es |
description |
Biometric identification has been widely used in recent years, mainly because they represent more secure authentication systems than conventional ones. In this context, facial recognition is highlighted since it allows detecting and recognizing a person in real-time for their facial characteristics. This technology is particularly important and used in many applications such as smart surveillance. The evolution in surveillance technologies, thanks to Internet of Things (IoT), allows greater automation of this process since many monitoring functions performed by people can be replaced by realtime recognition techniques, turning the system even smarter, giving more information to the user, or increasing security in monitoring environments. It is noted that society is at a point where different types of technologies are converging and adding up. It is known that computer vision techniques are being incorporated into surveillance systems and deep learning models have proven innovative in solving various visual recognition problems. In this sense, this dissertation proposes a surveillance system, which uses these techniques to identify the individuals present in the vision field of a camera through a combination including Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), and a deep learning model, called ResNet (Residual Network). The set of detection and recognition techniques was deployed in a hardware with limited processing power, quite common in IoT devices. The idea is to demonstrate that even under these conditions, the proposed architecture still manages to work with high precision and in real-time. To achieve the proposed objective, experiments were carried out in different scenarios to verify the accuracy and robustness of the techniques adopted under different conditions. Two techniques were used in the detection scenario, but only one was carried out in the experiments since it consumes 20 times less processing time when compared to the second. The accuracy of the ResNet model used reached about 99.38% in the Labeled Faces in the Wild (LFW) Benchmark while it manages to deliver a rate of 1-3 fps (frames per second), showing excellent results, especially considering an embedded system. The performance evaluation of the system against different types of noise showed high invariability with darkening of the images and high precision and robustness against blur type interference. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-03-11T18:27:55Z |
dc.date.issued.fl_str_mv |
2021-01-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Teixeira, Eduardo Henrique. An IoT-based face recognition solution using a residual network model for deep metric learning. 2021. [110]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [ Santa Rita do Sapucai] . |
dc.identifier.uri.fl_str_mv |
https://tede.inatel.br:8080/tede/handle/tede/212 |
identifier_str_mv |
Teixeira, Eduardo Henrique. An IoT-based face recognition solution using a residual network model for deep metric learning. 2021. [110]. disserta????o( Mestrado em Engenharia de Telecomunica????es) - Instituto Nacional de Telecomunica????es, [ Santa Rita do Sapucai] . |
url |
https://tede.inatel.br:8080/tede/handle/tede/212 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Telecomunica????es |
dc.publisher.program.fl_str_mv |
Mestrado em Engenharia de Telecomunica????es |
dc.publisher.initials.fl_str_mv |
INATEL |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto Nacional de Telecomunica????es |
publisher.none.fl_str_mv |
Instituto Nacional de Telecomunica????es |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da INATEL instname:Instituto Nacional de Telecomunicações (INATEL) instacron:INATEL |
instname_str |
Instituto Nacional de Telecomunicações (INATEL) |
instacron_str |
INATEL |
institution |
INATEL |
reponame_str |
Biblioteca Digital de Teses e Dissertações da INATEL |
collection |
Biblioteca Digital de Teses e Dissertações da INATEL |
bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/212/1/license.txt http://localhost:8080/tede/bitstream/tede/212/2/license_url http://localhost:8080/tede/bitstream/tede/212/3/license_text http://localhost:8080/tede/bitstream/tede/212/4/license_rdf http://localhost:8080/tede/bitstream/tede/212/5/Disserta%C3%A7%C3%A3o+V.Final+Eduardo+Henrique+Teixeira+-+2021.pdf http://localhost:8080/tede/bitstream/tede/212/6/Disserta%C3%A7%C3%A3o+V.Final+Eduardo+Henrique+Teixeira+-+2021.pdf.txt http://localhost:8080/tede/bitstream/tede/212/7/Disserta%C3%A7%C3%A3o+V.Final+Eduardo+Henrique+Teixeira+-+2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
c6279291b293f0db82678eaa73a27769 587cd8ffae15c8598ed3c46d248a3f38 d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 3231efdd7fab1d1c7ecfb5a677ca3f9c d871e740a94f4cc1721c351669f26226 f29dc098dfc1e88b9936704770fb8f33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da INATEL - Instituto Nacional de Telecomunicações (INATEL) |
repository.mail.fl_str_mv |
biblioteca@inatel.br || biblioteca.atendimento@inatel.br |
_version_ |
1800214191734259712 |