Deep learning for X-ray image classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/38579 |
Resumo: | This work aims to develop a deep learning model to correctly classify common chest pathologies like atelectasis, cardiomegaly, effusion and nodule as well as cases where none of these pathologies are present (labelled "no-findings") in frontal-view chest X-ray images. Two different models were created using the ResNet34 architecture: one with the classic single-label multi-class approach and the other with joined binary classifiers for atelectasis vs no-findings, cardiomegaly vs no-findings, effusion vs no-findings and nodule vs no-findings. The first classifier achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.73 for atelectasis, 0.91 for cardiomegaly, 0.82 for effusion, 0.67 for the "no-findings" and 0.74 for nodule. The second classifier achieved an AUC of 0.73 for atelectasis, 0.90 for cardiomegaly, 0.78 for effusion, 0.67 for "no-findings" and 0.74 for nodule. The multi-class multi-label approach revealed better results compared with the joined binary classifiers. Both models achieved state of the art results in the cardiomegaly and effusion classes. The nodule and the "no-findings" classes presented the worst mislabeling results. This called for further analysis of the models revealing the difficulty the model had on the "no-findings" class i.e, the model mislabeled the "no-findings" images with high confidence. After more closely inspecting the images in this class, the poor quality of in the images was noticed, revealing instances of possible mislabeled images and images where the lungs were out of focus. |
id |
RCAP_50df64450d6b3fabb12761c302744446 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/38579 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Deep learning for X-ray image classificationAtelectasisCardiomegalyDeep-learningEffusionNoduleResNet34X-ray imagesThis work aims to develop a deep learning model to correctly classify common chest pathologies like atelectasis, cardiomegaly, effusion and nodule as well as cases where none of these pathologies are present (labelled "no-findings") in frontal-view chest X-ray images. Two different models were created using the ResNet34 architecture: one with the classic single-label multi-class approach and the other with joined binary classifiers for atelectasis vs no-findings, cardiomegaly vs no-findings, effusion vs no-findings and nodule vs no-findings. The first classifier achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.73 for atelectasis, 0.91 for cardiomegaly, 0.82 for effusion, 0.67 for the "no-findings" and 0.74 for nodule. The second classifier achieved an AUC of 0.73 for atelectasis, 0.90 for cardiomegaly, 0.78 for effusion, 0.67 for "no-findings" and 0.74 for nodule. The multi-class multi-label approach revealed better results compared with the joined binary classifiers. Both models achieved state of the art results in the cardiomegaly and effusion classes. The nodule and the "no-findings" classes presented the worst mislabeling results. This called for further analysis of the models revealing the difficulty the model had on the "no-findings" class i.e, the model mislabeled the "no-findings" images with high confidence. After more closely inspecting the images in this class, the poor quality of in the images was noticed, revealing instances of possible mislabeled images and images where the lungs were out of focus.Este trabalho visa desenvolver um modelo de aprendizagem profunda para classificar correctamente as patologias atelectasia, cardiomegalia, derrame pleural, nódulo e "nenhuma descoberta" em imagens de raio-X frontal. Dois modelos diferentes foram criados utilizando a arquitectura ResNet34. O primeiro com a clássica abordagem multi-classe e o segundo usa a junção de classificadores binários para classificar atelectasia vs "sem descoberta", cardiomegalia vs "sem descoberta", derrame pleural vs "sem descoberta" e nódulo vs "sem descoberta". O primeiro classificador alcançou uma área sob a Curva (AUC) da curva característica operacional do receptor (ROC) de 0,73 para atelectasia, 0,91 para cardiomegalia, 0,82 para derrame pleural, 0,67 para o "sem descoberta" e 0,74 para nódulo. O segundo classificador alcançou um AUC de 0,73 para atelectasia, 0,90 para cardiomegalia, 0,78 para derrame pleural, 0,67 para o "sem descoberta" e 0,74 para nódulo. A abordagem multi-classe revelou melhores resultados em comparação com a junção dos classificadores binários. Ambos os modelos alcançaram os resultados na literatura para as classes de cardiomegalia e derrame pleural; o nódulo e o "sem descoberta" apresentaram os piores resultados sendo muitas vezes confundidos com outras classes. Isto exigiu uma análise mais aprofundada dos modelos, revelando a dificuldade que o modelo tinha na classe "sem descoberta"; o modelo classificou erradamente as imagens "sem descoberta" com grande confiança. Após uma análise mais aprofundada das imagens desta classe, notou-se a má qualidade destas, revelando casos de possíveis imagens mal identificadas e imagens em que os pulmões estavam desfocados.2023-07-12T12:11:03Z2022-12-15T00:00:00Z2022-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38579engNarciso, Teresa Costeirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:47:17Zoai:ria.ua.pt:10773/38579Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:47:17Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Deep learning for X-ray image classification |
title |
Deep learning for X-ray image classification |
spellingShingle |
Deep learning for X-ray image classification Narciso, Teresa Costeira Atelectasis Cardiomegaly Deep-learning Effusion Nodule ResNet34 X-ray images |
title_short |
Deep learning for X-ray image classification |
title_full |
Deep learning for X-ray image classification |
title_fullStr |
Deep learning for X-ray image classification |
title_full_unstemmed |
Deep learning for X-ray image classification |
title_sort |
Deep learning for X-ray image classification |
author |
Narciso, Teresa Costeira |
author_facet |
Narciso, Teresa Costeira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Narciso, Teresa Costeira |
dc.subject.por.fl_str_mv |
Atelectasis Cardiomegaly Deep-learning Effusion Nodule ResNet34 X-ray images |
topic |
Atelectasis Cardiomegaly Deep-learning Effusion Nodule ResNet34 X-ray images |
description |
This work aims to develop a deep learning model to correctly classify common chest pathologies like atelectasis, cardiomegaly, effusion and nodule as well as cases where none of these pathologies are present (labelled "no-findings") in frontal-view chest X-ray images. Two different models were created using the ResNet34 architecture: one with the classic single-label multi-class approach and the other with joined binary classifiers for atelectasis vs no-findings, cardiomegaly vs no-findings, effusion vs no-findings and nodule vs no-findings. The first classifier achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.73 for atelectasis, 0.91 for cardiomegaly, 0.82 for effusion, 0.67 for the "no-findings" and 0.74 for nodule. The second classifier achieved an AUC of 0.73 for atelectasis, 0.90 for cardiomegaly, 0.78 for effusion, 0.67 for "no-findings" and 0.74 for nodule. The multi-class multi-label approach revealed better results compared with the joined binary classifiers. Both models achieved state of the art results in the cardiomegaly and effusion classes. The nodule and the "no-findings" classes presented the worst mislabeling results. This called for further analysis of the models revealing the difficulty the model had on the "no-findings" class i.e, the model mislabeled the "no-findings" images with high confidence. After more closely inspecting the images in this class, the poor quality of in the images was noticed, revealing instances of possible mislabeled images and images where the lungs were out of focus. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-15T00:00:00Z 2022-12-15 2023-07-12T12:11:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/38579 |
url |
http://hdl.handle.net/10773/38579 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543863830577152 |