Deep learning for X-ray image classification

Detalhes bibliográficos
Autor(a) principal: Narciso, Teresa Costeira
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/38579
Resumo: This work aims to develop a deep learning model to correctly classify common chest pathologies like atelectasis, cardiomegaly, effusion and nodule as well as cases where none of these pathologies are present (labelled "no-findings") in frontal-view chest X-ray images. Two different models were created using the ResNet34 architecture: one with the classic single-label multi-class approach and the other with joined binary classifiers for atelectasis vs no-findings, cardiomegaly vs no-findings, effusion vs no-findings and nodule vs no-findings. The first classifier achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.73 for atelectasis, 0.91 for cardiomegaly, 0.82 for effusion, 0.67 for the "no-findings" and 0.74 for nodule. The second classifier achieved an AUC of 0.73 for atelectasis, 0.90 for cardiomegaly, 0.78 for effusion, 0.67 for "no-findings" and 0.74 for nodule. The multi-class multi-label approach revealed better results compared with the joined binary classifiers. Both models achieved state of the art results in the cardiomegaly and effusion classes. The nodule and the "no-findings" classes presented the worst mislabeling results. This called for further analysis of the models revealing the difficulty the model had on the "no-findings" class i.e, the model mislabeled the "no-findings" images with high confidence. After more closely inspecting the images in this class, the poor quality of in the images was noticed, revealing instances of possible mislabeled images and images where the lungs were out of focus.
id RCAP_50df64450d6b3fabb12761c302744446
oai_identifier_str oai:ria.ua.pt:10773/38579
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Deep learning for X-ray image classificationAtelectasisCardiomegalyDeep-learningEffusionNoduleResNet34X-ray imagesThis work aims to develop a deep learning model to correctly classify common chest pathologies like atelectasis, cardiomegaly, effusion and nodule as well as cases where none of these pathologies are present (labelled "no-findings") in frontal-view chest X-ray images. Two different models were created using the ResNet34 architecture: one with the classic single-label multi-class approach and the other with joined binary classifiers for atelectasis vs no-findings, cardiomegaly vs no-findings, effusion vs no-findings and nodule vs no-findings. The first classifier achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.73 for atelectasis, 0.91 for cardiomegaly, 0.82 for effusion, 0.67 for the "no-findings" and 0.74 for nodule. The second classifier achieved an AUC of 0.73 for atelectasis, 0.90 for cardiomegaly, 0.78 for effusion, 0.67 for "no-findings" and 0.74 for nodule. The multi-class multi-label approach revealed better results compared with the joined binary classifiers. Both models achieved state of the art results in the cardiomegaly and effusion classes. The nodule and the "no-findings" classes presented the worst mislabeling results. This called for further analysis of the models revealing the difficulty the model had on the "no-findings" class i.e, the model mislabeled the "no-findings" images with high confidence. After more closely inspecting the images in this class, the poor quality of in the images was noticed, revealing instances of possible mislabeled images and images where the lungs were out of focus.Este trabalho visa desenvolver um modelo de aprendizagem profunda para classificar correctamente as patologias atelectasia, cardiomegalia, derrame pleural, nódulo e "nenhuma descoberta" em imagens de raio-X frontal. Dois modelos diferentes foram criados utilizando a arquitectura ResNet34. O primeiro com a clássica abordagem multi-classe e o segundo usa a junção de classificadores binários para classificar atelectasia vs "sem descoberta", cardiomegalia vs "sem descoberta", derrame pleural vs "sem descoberta" e nódulo vs "sem descoberta". O primeiro classificador alcançou uma área sob a Curva (AUC) da curva característica operacional do receptor (ROC) de 0,73 para atelectasia, 0,91 para cardiomegalia, 0,82 para derrame pleural, 0,67 para o "sem descoberta" e 0,74 para nódulo. O segundo classificador alcançou um AUC de 0,73 para atelectasia, 0,90 para cardiomegalia, 0,78 para derrame pleural, 0,67 para o "sem descoberta" e 0,74 para nódulo. A abordagem multi-classe revelou melhores resultados em comparação com a junção dos classificadores binários. Ambos os modelos alcançaram os resultados na literatura para as classes de cardiomegalia e derrame pleural; o nódulo e o "sem descoberta" apresentaram os piores resultados sendo muitas vezes confundidos com outras classes. Isto exigiu uma análise mais aprofundada dos modelos, revelando a dificuldade que o modelo tinha na classe "sem descoberta"; o modelo classificou erradamente as imagens "sem descoberta" com grande confiança. Após uma análise mais aprofundada das imagens desta classe, notou-se a má qualidade destas, revelando casos de possíveis imagens mal identificadas e imagens em que os pulmões estavam desfocados.2023-07-12T12:11:03Z2022-12-15T00:00:00Z2022-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38579engNarciso, Teresa Costeirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:47:17Zoai:ria.ua.pt:10773/38579Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:47:17Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Deep learning for X-ray image classification
title Deep learning for X-ray image classification
spellingShingle Deep learning for X-ray image classification
Narciso, Teresa Costeira
Atelectasis
Cardiomegaly
Deep-learning
Effusion
Nodule
ResNet34
X-ray images
title_short Deep learning for X-ray image classification
title_full Deep learning for X-ray image classification
title_fullStr Deep learning for X-ray image classification
title_full_unstemmed Deep learning for X-ray image classification
title_sort Deep learning for X-ray image classification
author Narciso, Teresa Costeira
author_facet Narciso, Teresa Costeira
author_role author
dc.contributor.author.fl_str_mv Narciso, Teresa Costeira
dc.subject.por.fl_str_mv Atelectasis
Cardiomegaly
Deep-learning
Effusion
Nodule
ResNet34
X-ray images
topic Atelectasis
Cardiomegaly
Deep-learning
Effusion
Nodule
ResNet34
X-ray images
description This work aims to develop a deep learning model to correctly classify common chest pathologies like atelectasis, cardiomegaly, effusion and nodule as well as cases where none of these pathologies are present (labelled "no-findings") in frontal-view chest X-ray images. Two different models were created using the ResNet34 architecture: one with the classic single-label multi-class approach and the other with joined binary classifiers for atelectasis vs no-findings, cardiomegaly vs no-findings, effusion vs no-findings and nodule vs no-findings. The first classifier achieved an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.73 for atelectasis, 0.91 for cardiomegaly, 0.82 for effusion, 0.67 for the "no-findings" and 0.74 for nodule. The second classifier achieved an AUC of 0.73 for atelectasis, 0.90 for cardiomegaly, 0.78 for effusion, 0.67 for "no-findings" and 0.74 for nodule. The multi-class multi-label approach revealed better results compared with the joined binary classifiers. Both models achieved state of the art results in the cardiomegaly and effusion classes. The nodule and the "no-findings" classes presented the worst mislabeling results. This called for further analysis of the models revealing the difficulty the model had on the "no-findings" class i.e, the model mislabeled the "no-findings" images with high confidence. After more closely inspecting the images in this class, the poor quality of in the images was noticed, revealing instances of possible mislabeled images and images where the lungs were out of focus.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-15T00:00:00Z
2022-12-15
2023-07-12T12:11:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/38579
url http://hdl.handle.net/10773/38579
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543863830577152