Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens

Detalhes bibliográficos
Autor(a) principal: Gabriel Fornari
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do INPE
Texto Completo: http://urlib.net/sid.inpe.br/mtc-m21c/2021/02.05.01.02
Resumo: Ambientes operacionais dinâmicos requerem que sejam desenvolvidos sistemas que possam se adaptar a mudanças não determinísticas das condições operacionais. Na literatura, áreas com diferentes nomenclaturas estudam o processo de adaptação em sistemas de engenharia, tais como sistemas autoadaptativos e sistemas reconfiguráveis. Recentemente, os Veículos Aéreos Não Tripulados (VANTs) passaram a ser utilizados em diferentes aplicações. Tais veículos necessitam de um sistema de estimação da posição para serem capazes de realizar o controle e navegação da aeronave. A despeito de ser por meio do Sistema Global de Navegação por Satélite (GNSS) que a estimativa de posição de VANTs em tempo real é mais usualmente identificada, devido a uma série de problemas associados ao uso de satélites no cálculo da posição, metodologias alternativas estão sendo propostas para o mesmo fim, como o uso de sensores imageadores e visão computacional. Nesse sentido, diferentes algoritmos de visão computacional podem ser utilizados para compor o sistema de navegação do VANT, que, por sua vez, se encontra imerso em um ambiente operacional cujas condições podem variar dinamicamente. A presente tese de doutorado objetiva contribuir para o processo de navegação autônoma de VANTs por meio da visão computacional identificando o mais adequado, entre vários algoritmos de visão computacional, para a estimação da posição de VANTs por imagens obtidas sob diferentes condições ambientais. Para esse processo, é proposto o uso de diferentes técnicas de Aprendizado de Máquina, que incluem Máquinas de Vetores de Suporte, Árvores de Classificação e Redes Neurais Artificiais. Os resultados revelam que a abordagem autoadaptativa melhora o desempenho, para estimar a posição de VANTs por meio de imagens, se comparada a uma abordagem não adaptativa estática, demonstrando a viabilidade dessa pesquisa.
id INPE_109f82c3a659c2f54d8c307ff3f1acb3
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2021/02.05.01.02.47-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCaracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagensCharacterization and development of a self-adaptive system for estimating the position of unmanned aerial vehicles based on images2020-12-22Valdivino Alexandre de Santiago JuniorElcio Hideiti ShiguemoriHaroldo Fraga de Campos VelhoThales Sehn KörtingJurandy Gomes de Almeida JuniorMarcos Ricardo Omena de Alburquerque MaximoGabriel FornariInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Computação AplicadaINPEBRsistemas autoadaptativosVeículos Aéreos Não Tripulados (VANTs)visão computacionalestimação da posição por imagensaprendizado de máquinaself-adaptive systemsUnmaned Aerial Vehicles (UAVs)computer visionpose estimation based on imagesmachine learningAmbientes operacionais dinâmicos requerem que sejam desenvolvidos sistemas que possam se adaptar a mudanças não determinísticas das condições operacionais. Na literatura, áreas com diferentes nomenclaturas estudam o processo de adaptação em sistemas de engenharia, tais como sistemas autoadaptativos e sistemas reconfiguráveis. Recentemente, os Veículos Aéreos Não Tripulados (VANTs) passaram a ser utilizados em diferentes aplicações. Tais veículos necessitam de um sistema de estimação da posição para serem capazes de realizar o controle e navegação da aeronave. A despeito de ser por meio do Sistema Global de Navegação por Satélite (GNSS) que a estimativa de posição de VANTs em tempo real é mais usualmente identificada, devido a uma série de problemas associados ao uso de satélites no cálculo da posição, metodologias alternativas estão sendo propostas para o mesmo fim, como o uso de sensores imageadores e visão computacional. Nesse sentido, diferentes algoritmos de visão computacional podem ser utilizados para compor o sistema de navegação do VANT, que, por sua vez, se encontra imerso em um ambiente operacional cujas condições podem variar dinamicamente. A presente tese de doutorado objetiva contribuir para o processo de navegação autônoma de VANTs por meio da visão computacional identificando o mais adequado, entre vários algoritmos de visão computacional, para a estimação da posição de VANTs por imagens obtidas sob diferentes condições ambientais. Para esse processo, é proposto o uso de diferentes técnicas de Aprendizado de Máquina, que incluem Máquinas de Vetores de Suporte, Árvores de Classificação e Redes Neurais Artificiais. Os resultados revelam que a abordagem autoadaptativa melhora o desempenho, para estimar a posição de VANTs por meio de imagens, se comparada a uma abordagem não adaptativa estática, demonstrando a viabilidade dessa pesquisa.Dynamic operating environments demand the development of systems able to selfadapt to non-deterministic changes in operating conditions. In the scientific literature, different nomenclatures are used to name the study of adaptation process in engineering systems, such as self-adaptive systems and reconfigurable systems. Recently, Unmanned Aerial Vehicles (UAV) have been used in different applications. Such vehicles need a pose estimation system and, consequently, a system able to control and navigate the aircraft. Despite the fact that it is by means of Global Navigation Satellite System (GNSS) that the estimation of the position of real-time UAVs is usually estimated, there is a series of problems associated to the use of satellites in the computation of the position, and new alternative methodologies are being proposed for the same goal, as the use of imaging sensors and computer vision. In this sense, different algorithms of computer vision can be used to compose the navigation system of the UAV, which, in turn, is immersed in an operating environment whose conditions can change dynamically. This PhD thesis aims to contribute to the process of autonomous navigation of UAVs using computer vision identifying the most appropriate, among several camputer vision algorithms, for the pose estimation system of UAVs based on images obtained under different environmental conditions. For this strategy, several Machine Learning methods are used, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Classification Trees. The results revealed that the adaptive methodology can increase performance, to estimate the position of UAVs using imagens, if compared to a nonadaptive static methodology, demonstrating the viability of this research.http://urlib.net/sid.inpe.br/mtc-m21c/2021/02.05.01.02info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:25Zoai:urlib.net:sid.inpe.br/mtc-m21c/2021/02.05.01.02.47-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:26.641Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.pt.fl_str_mv Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
dc.title.alternative.en.fl_str_mv Characterization and development of a self-adaptive system for estimating the position of unmanned aerial vehicles based on images
title Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
spellingShingle Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
Gabriel Fornari
title_short Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
title_full Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
title_fullStr Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
title_full_unstemmed Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
title_sort Caracterização e desenvolvimento de um sistema autoadaptativo para estimação da posição de veículos aéreos não tripulados baseado em imagens
author Gabriel Fornari
author_facet Gabriel Fornari
author_role author
dc.contributor.advisor1.fl_str_mv Valdivino Alexandre de Santiago Junior
dc.contributor.advisor2.fl_str_mv Elcio Hideiti Shiguemori
dc.contributor.referee1.fl_str_mv Haroldo Fraga de Campos Velho
dc.contributor.referee2.fl_str_mv Thales Sehn Körting
dc.contributor.referee3.fl_str_mv Jurandy Gomes de Almeida Junior
dc.contributor.referee4.fl_str_mv Marcos Ricardo Omena de Alburquerque Maximo
dc.contributor.author.fl_str_mv Gabriel Fornari
contributor_str_mv Valdivino Alexandre de Santiago Junior
Elcio Hideiti Shiguemori
Haroldo Fraga de Campos Velho
Thales Sehn Körting
Jurandy Gomes de Almeida Junior
Marcos Ricardo Omena de Alburquerque Maximo
dc.description.abstract.por.fl_txt_mv Ambientes operacionais dinâmicos requerem que sejam desenvolvidos sistemas que possam se adaptar a mudanças não determinísticas das condições operacionais. Na literatura, áreas com diferentes nomenclaturas estudam o processo de adaptação em sistemas de engenharia, tais como sistemas autoadaptativos e sistemas reconfiguráveis. Recentemente, os Veículos Aéreos Não Tripulados (VANTs) passaram a ser utilizados em diferentes aplicações. Tais veículos necessitam de um sistema de estimação da posição para serem capazes de realizar o controle e navegação da aeronave. A despeito de ser por meio do Sistema Global de Navegação por Satélite (GNSS) que a estimativa de posição de VANTs em tempo real é mais usualmente identificada, devido a uma série de problemas associados ao uso de satélites no cálculo da posição, metodologias alternativas estão sendo propostas para o mesmo fim, como o uso de sensores imageadores e visão computacional. Nesse sentido, diferentes algoritmos de visão computacional podem ser utilizados para compor o sistema de navegação do VANT, que, por sua vez, se encontra imerso em um ambiente operacional cujas condições podem variar dinamicamente. A presente tese de doutorado objetiva contribuir para o processo de navegação autônoma de VANTs por meio da visão computacional identificando o mais adequado, entre vários algoritmos de visão computacional, para a estimação da posição de VANTs por imagens obtidas sob diferentes condições ambientais. Para esse processo, é proposto o uso de diferentes técnicas de Aprendizado de Máquina, que incluem Máquinas de Vetores de Suporte, Árvores de Classificação e Redes Neurais Artificiais. Os resultados revelam que a abordagem autoadaptativa melhora o desempenho, para estimar a posição de VANTs por meio de imagens, se comparada a uma abordagem não adaptativa estática, demonstrando a viabilidade dessa pesquisa.
dc.description.abstract.eng.fl_txt_mv Dynamic operating environments demand the development of systems able to selfadapt to non-deterministic changes in operating conditions. In the scientific literature, different nomenclatures are used to name the study of adaptation process in engineering systems, such as self-adaptive systems and reconfigurable systems. Recently, Unmanned Aerial Vehicles (UAV) have been used in different applications. Such vehicles need a pose estimation system and, consequently, a system able to control and navigate the aircraft. Despite the fact that it is by means of Global Navigation Satellite System (GNSS) that the estimation of the position of real-time UAVs is usually estimated, there is a series of problems associated to the use of satellites in the computation of the position, and new alternative methodologies are being proposed for the same goal, as the use of imaging sensors and computer vision. In this sense, different algorithms of computer vision can be used to compose the navigation system of the UAV, which, in turn, is immersed in an operating environment whose conditions can change dynamically. This PhD thesis aims to contribute to the process of autonomous navigation of UAVs using computer vision identifying the most appropriate, among several camputer vision algorithms, for the pose estimation system of UAVs based on images obtained under different environmental conditions. For this strategy, several Machine Learning methods are used, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Classification Trees. The results revealed that the adaptive methodology can increase performance, to estimate the position of UAVs using imagens, if compared to a nonadaptive static methodology, demonstrating the viability of this research.
description Ambientes operacionais dinâmicos requerem que sejam desenvolvidos sistemas que possam se adaptar a mudanças não determinísticas das condições operacionais. Na literatura, áreas com diferentes nomenclaturas estudam o processo de adaptação em sistemas de engenharia, tais como sistemas autoadaptativos e sistemas reconfiguráveis. Recentemente, os Veículos Aéreos Não Tripulados (VANTs) passaram a ser utilizados em diferentes aplicações. Tais veículos necessitam de um sistema de estimação da posição para serem capazes de realizar o controle e navegação da aeronave. A despeito de ser por meio do Sistema Global de Navegação por Satélite (GNSS) que a estimativa de posição de VANTs em tempo real é mais usualmente identificada, devido a uma série de problemas associados ao uso de satélites no cálculo da posição, metodologias alternativas estão sendo propostas para o mesmo fim, como o uso de sensores imageadores e visão computacional. Nesse sentido, diferentes algoritmos de visão computacional podem ser utilizados para compor o sistema de navegação do VANT, que, por sua vez, se encontra imerso em um ambiente operacional cujas condições podem variar dinamicamente. A presente tese de doutorado objetiva contribuir para o processo de navegação autônoma de VANTs por meio da visão computacional identificando o mais adequado, entre vários algoritmos de visão computacional, para a estimação da posição de VANTs por imagens obtidas sob diferentes condições ambientais. Para esse processo, é proposto o uso de diferentes técnicas de Aprendizado de Máquina, que incluem Máquinas de Vetores de Suporte, Árvores de Classificação e Redes Neurais Artificiais. Os resultados revelam que a abordagem autoadaptativa melhora o desempenho, para estimar a posição de VANTs por meio de imagens, se comparada a uma abordagem não adaptativa estática, demonstrando a viabilidade dessa pesquisa.
publishDate 2020
dc.date.issued.fl_str_mv 2020-12-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2021/02.05.01.02
url http://urlib.net/sid.inpe.br/mtc-m21c/2021/02.05.01.02
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Computação Aplicada
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Computação Aplicada
contributor_advisor1_txtF_mv Valdivino Alexandre de Santiago Junior
_version_ 1706809364871905280