Stability characteristic of subsonic binary axisymmetric coaxial jets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do INPE |
Texto Completo: | http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.29.17.24 |
Resumo: | The performance of combustion systems in gas turbines and rocket engines depend strongly on the proper injection and mixing between fuel and oxidizer. The injection of propellants in these systems is performed using shear coaxial injectors that define the physical initial conditions for the combustion process. The hydrodynamic instabilities formed by the coaxial shear injector allow the mixing between the propellants through vorticity created by the instability of the shear layers. This work had as main objective the understanding of the stability characteristics of axisymmetric coaxial jets composed of different gases, specifically hydrogen and oxygen. To analyze the stability characteristics of coaxial binary jets the Linear Stability Theory (LST) and High Order Simulation (HOS) approaches were used. The LST has shown that the cases where the hydrogen was used as species in the inner jet H2 − O2 the amplification rates of Mode II are larger than the homogeneous coaxial jet, contrarily to what happens in O2 − H2 configuration. This agreed with the previous studies in a binary mixing layer, in which when the heavier species is in the lower velocity stream the amplification rates are larger, and vice versa. However For Mode I, the binary mixing layer results can not be extrapolated for a coaxial binary jet, once the confinement effect, caused by the finite quantity of species that can be placed in the inner jet, plays an important role. Using a low Mach number formulation, the compressible effects were neglected with the intention to show in the Less and Lin equation (compressible Rayleigh equation) where is the role of the species in the stability properties, which was called inertial effects. This formulation together with the compressible formulation also allows understanding the compressible effects caused by the different speed of sound of the species. Using High Order Simulations (HOS) of the Euler equation as second way to analyses the stability characteristics of coaxial binary jets, the main results of the LST were simulated in order to view different effects neglected by this theory, as: nonlinearities as modes interact, the used of realistic velocity and species profiles not based on canonical equations for the base flow and the visualization of the growth of the instabilities. |
id |
INPE_6700fb6f6f154e724498b1fbb9be7f8f |
---|---|
oai_identifier_str |
oai:urlib.net:sid.inpe.br/mtc-m21c/2019/11.29.17.24.40-0 |
network_acronym_str |
INPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações do INPE |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisStability characteristic of subsonic binary axisymmetric coaxial jetsCaracterísticas de estabilidade de jatos coaxiais binários subsônicos e axissimétricos2019-11-06Márcio Teixeira de MendonçaFernando Fachini FilhoRoman Ivanovitch SavonovAndré Valdetaro Gomes CavalieriLeandro Franco de SouzaJhonatan Andrés Aguirre MancoInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Combustão e PropulsãoINPEBRbinary coaxial jetshydrodynamic stabilityEuler equationhigh order numerical simulationjatos coaxiais binárioestabilidade hidrodinâmicaequações de Eulersimulação de alta ordemThe performance of combustion systems in gas turbines and rocket engines depend strongly on the proper injection and mixing between fuel and oxidizer. The injection of propellants in these systems is performed using shear coaxial injectors that define the physical initial conditions for the combustion process. The hydrodynamic instabilities formed by the coaxial shear injector allow the mixing between the propellants through vorticity created by the instability of the shear layers. This work had as main objective the understanding of the stability characteristics of axisymmetric coaxial jets composed of different gases, specifically hydrogen and oxygen. To analyze the stability characteristics of coaxial binary jets the Linear Stability Theory (LST) and High Order Simulation (HOS) approaches were used. The LST has shown that the cases where the hydrogen was used as species in the inner jet H2 − O2 the amplification rates of Mode II are larger than the homogeneous coaxial jet, contrarily to what happens in O2 − H2 configuration. This agreed with the previous studies in a binary mixing layer, in which when the heavier species is in the lower velocity stream the amplification rates are larger, and vice versa. However For Mode I, the binary mixing layer results can not be extrapolated for a coaxial binary jet, once the confinement effect, caused by the finite quantity of species that can be placed in the inner jet, plays an important role. Using a low Mach number formulation, the compressible effects were neglected with the intention to show in the Less and Lin equation (compressible Rayleigh equation) where is the role of the species in the stability properties, which was called inertial effects. This formulation together with the compressible formulation also allows understanding the compressible effects caused by the different speed of sound of the species. Using High Order Simulations (HOS) of the Euler equation as second way to analyses the stability characteristics of coaxial binary jets, the main results of the LST were simulated in order to view different effects neglected by this theory, as: nonlinearities as modes interact, the used of realistic velocity and species profiles not based on canonical equations for the base flow and the visualization of the growth of the instabilities.O desempenho dos sistemas de combustão em turbinas a gás e motores foguete depende fortemente da injeção e mistura adequadas entre o combustível e o oxidante. A injeção dos propelentes nesses sistemas é realizada usando injetores coaxiais de cisalhamento, os quais definem as condições iniciais para o processo de combustão. As instabilidades hidrodinâmicas formadas pelo injetor de cisalhamento coaxial permitem a mistura entre os propelentes por meio da vorticidade gerada pela instabilidade das camadas de cisalhamento. Este trabalho tem como objetivo principal o entendimento das características de estabilidade de jatos coaxiais axissimétricos compostos por diferentes gases, especificamente hidrogênio e oxigênio. Para analisar as características de estabilidade dos jatos binários coaxiais, foram utilizadas as abordagens da Teoria da Estabilidade Linear (LST) e Simulação numérica de Alta Ordem (HOS). O LST mostrou que os casos em que o hidrogênio foi usado como espécie no jato interno H2-O2 as taxas de amplificação do Modo II são maiores que o jato coaxial homogêneo, ao contrário do que acontece na configuração do O2-H2. Isto concordou com os estudos anteriores realizados em camadas de mistura binária, nos quais quando as espécies mais pesadas estão na corrente de velocidade mais baixa, as taxas de amplificação são maiores e vice-versa. No entanto, no Modo I, os resultados da camada de mistura binária não podem ser extrapolados para um jato binário coaxial, uma vez que o efeito de confinamento, causado pela quantidade finita de espécies que podem ser colocadas no jato interno, desempenha um papel importante. Usando uma formulação de Mach baixo, os efeitos compressíveis foram desprezados com a intenção de mostrar na equação de Less e Lin (equação de Rayleigh compressível) onde está o papel das espécies nas características de estabilidade, chamados de efeitos inerciais. Esta formulação, juntamente com a formulação compressível, também permitiu compreender os efeitos compressíveis causados pelas diferentes velocidades do som das espécies. Utilizando simulações de alta ordem (HOS) das equações de Euler como segunda maneira de analisar as características de estabilidade de jatos binários coaxiais, foram simulados os principais resultados do LST para visualizar diferentes efeitos desprezados por essa teoria, como: não linearidades como a iteração entres os modos, o uso de um perfil de velocidade mais realista , perfis de espécies não baseados em equações canônicas para o escomento base e a visualização do crescimento das instabilidades.http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.29.17.24info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:10Zoai:urlib.net:sid.inpe.br/mtc-m21c/2019/11.29.17.24.40-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:10.798Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false |
dc.title.en.fl_str_mv |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
dc.title.alternative.pt.fl_str_mv |
Características de estabilidade de jatos coaxiais binários subsônicos e axissimétricos |
title |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
spellingShingle |
Stability characteristic of subsonic binary axisymmetric coaxial jets Jhonatan Andrés Aguirre Manco |
title_short |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
title_full |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
title_fullStr |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
title_full_unstemmed |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
title_sort |
Stability characteristic of subsonic binary axisymmetric coaxial jets |
author |
Jhonatan Andrés Aguirre Manco |
author_facet |
Jhonatan Andrés Aguirre Manco |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Márcio Teixeira de Mendonça |
dc.contributor.referee1.fl_str_mv |
Fernando Fachini Filho |
dc.contributor.referee2.fl_str_mv |
Roman Ivanovitch Savonov |
dc.contributor.referee3.fl_str_mv |
André Valdetaro Gomes Cavalieri |
dc.contributor.referee4.fl_str_mv |
Leandro Franco de Souza |
dc.contributor.author.fl_str_mv |
Jhonatan Andrés Aguirre Manco |
contributor_str_mv |
Márcio Teixeira de Mendonça Fernando Fachini Filho Roman Ivanovitch Savonov André Valdetaro Gomes Cavalieri Leandro Franco de Souza |
dc.description.abstract.por.fl_txt_mv |
The performance of combustion systems in gas turbines and rocket engines depend strongly on the proper injection and mixing between fuel and oxidizer. The injection of propellants in these systems is performed using shear coaxial injectors that define the physical initial conditions for the combustion process. The hydrodynamic instabilities formed by the coaxial shear injector allow the mixing between the propellants through vorticity created by the instability of the shear layers. This work had as main objective the understanding of the stability characteristics of axisymmetric coaxial jets composed of different gases, specifically hydrogen and oxygen. To analyze the stability characteristics of coaxial binary jets the Linear Stability Theory (LST) and High Order Simulation (HOS) approaches were used. The LST has shown that the cases where the hydrogen was used as species in the inner jet H2 − O2 the amplification rates of Mode II are larger than the homogeneous coaxial jet, contrarily to what happens in O2 − H2 configuration. This agreed with the previous studies in a binary mixing layer, in which when the heavier species is in the lower velocity stream the amplification rates are larger, and vice versa. However For Mode I, the binary mixing layer results can not be extrapolated for a coaxial binary jet, once the confinement effect, caused by the finite quantity of species that can be placed in the inner jet, plays an important role. Using a low Mach number formulation, the compressible effects were neglected with the intention to show in the Less and Lin equation (compressible Rayleigh equation) where is the role of the species in the stability properties, which was called inertial effects. This formulation together with the compressible formulation also allows understanding the compressible effects caused by the different speed of sound of the species. Using High Order Simulations (HOS) of the Euler equation as second way to analyses the stability characteristics of coaxial binary jets, the main results of the LST were simulated in order to view different effects neglected by this theory, as: nonlinearities as modes interact, the used of realistic velocity and species profiles not based on canonical equations for the base flow and the visualization of the growth of the instabilities. O desempenho dos sistemas de combustão em turbinas a gás e motores foguete depende fortemente da injeção e mistura adequadas entre o combustível e o oxidante. A injeção dos propelentes nesses sistemas é realizada usando injetores coaxiais de cisalhamento, os quais definem as condições iniciais para o processo de combustão. As instabilidades hidrodinâmicas formadas pelo injetor de cisalhamento coaxial permitem a mistura entre os propelentes por meio da vorticidade gerada pela instabilidade das camadas de cisalhamento. Este trabalho tem como objetivo principal o entendimento das características de estabilidade de jatos coaxiais axissimétricos compostos por diferentes gases, especificamente hidrogênio e oxigênio. Para analisar as características de estabilidade dos jatos binários coaxiais, foram utilizadas as abordagens da Teoria da Estabilidade Linear (LST) e Simulação numérica de Alta Ordem (HOS). O LST mostrou que os casos em que o hidrogênio foi usado como espécie no jato interno H2-O2 as taxas de amplificação do Modo II são maiores que o jato coaxial homogêneo, ao contrário do que acontece na configuração do O2-H2. Isto concordou com os estudos anteriores realizados em camadas de mistura binária, nos quais quando as espécies mais pesadas estão na corrente de velocidade mais baixa, as taxas de amplificação são maiores e vice-versa. No entanto, no Modo I, os resultados da camada de mistura binária não podem ser extrapolados para um jato binário coaxial, uma vez que o efeito de confinamento, causado pela quantidade finita de espécies que podem ser colocadas no jato interno, desempenha um papel importante. Usando uma formulação de Mach baixo, os efeitos compressíveis foram desprezados com a intenção de mostrar na equação de Less e Lin (equação de Rayleigh compressível) onde está o papel das espécies nas características de estabilidade, chamados de efeitos inerciais. Esta formulação, juntamente com a formulação compressível, também permitiu compreender os efeitos compressíveis causados pelas diferentes velocidades do som das espécies. Utilizando simulações de alta ordem (HOS) das equações de Euler como segunda maneira de analisar as características de estabilidade de jatos binários coaxiais, foram simulados os principais resultados do LST para visualizar diferentes efeitos desprezados por essa teoria, como: não linearidades como a iteração entres os modos, o uso de um perfil de velocidade mais realista , perfis de espécies não baseados em equações canônicas para o escomento base e a visualização do crescimento das instabilidades. |
description |
The performance of combustion systems in gas turbines and rocket engines depend strongly on the proper injection and mixing between fuel and oxidizer. The injection of propellants in these systems is performed using shear coaxial injectors that define the physical initial conditions for the combustion process. The hydrodynamic instabilities formed by the coaxial shear injector allow the mixing between the propellants through vorticity created by the instability of the shear layers. This work had as main objective the understanding of the stability characteristics of axisymmetric coaxial jets composed of different gases, specifically hydrogen and oxygen. To analyze the stability characteristics of coaxial binary jets the Linear Stability Theory (LST) and High Order Simulation (HOS) approaches were used. The LST has shown that the cases where the hydrogen was used as species in the inner jet H2 − O2 the amplification rates of Mode II are larger than the homogeneous coaxial jet, contrarily to what happens in O2 − H2 configuration. This agreed with the previous studies in a binary mixing layer, in which when the heavier species is in the lower velocity stream the amplification rates are larger, and vice versa. However For Mode I, the binary mixing layer results can not be extrapolated for a coaxial binary jet, once the confinement effect, caused by the finite quantity of species that can be placed in the inner jet, plays an important role. Using a low Mach number formulation, the compressible effects were neglected with the intention to show in the Less and Lin equation (compressible Rayleigh equation) where is the role of the species in the stability properties, which was called inertial effects. This formulation together with the compressible formulation also allows understanding the compressible effects caused by the different speed of sound of the species. Using High Order Simulations (HOS) of the Euler equation as second way to analyses the stability characteristics of coaxial binary jets, the main results of the LST were simulated in order to view different effects neglected by this theory, as: nonlinearities as modes interact, the used of realistic velocity and species profiles not based on canonical equations for the base flow and the visualization of the growth of the instabilities. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-11-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.29.17.24 |
url |
http://urlib.net/sid.inpe.br/mtc-m21c/2019/11.29.17.24 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação do INPE em Combustão e Propulsão |
dc.publisher.initials.fl_str_mv |
INPE |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do INPE instname:Instituto Nacional de Pesquisas Espaciais (INPE) instacron:INPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do INPE |
collection |
Biblioteca Digital de Teses e Dissertações do INPE |
instname_str |
Instituto Nacional de Pesquisas Espaciais (INPE) |
instacron_str |
INPE |
institution |
INPE |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE) |
repository.mail.fl_str_mv |
|
publisher_program_txtF_mv |
Programa de Pós-Graduação do INPE em Combustão e Propulsão |
contributor_advisor1_txtF_mv |
Márcio Teixeira de Mendonça |
_version_ |
1706809363249758208 |