Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do INPE |
Texto Completo: | http://urlib.net/sid.inpe.br/mtc-m21b/2016/01.19.10.55 |
Resumo: | Seasonality and drought in Amazon rainforests have been controversially discussed in the literature, partially due to a limited ability of current remote sensing techniques to detect drought impacts on tropical vegetation. Detailed knowledge of vegetation structure is required for accurate modeling of terrestrial ecosystem. However, direct measurements of the three dimensional distribution of canopy elements using LiDAR are not widely available, especially in the Amazon region. This thesis explores a novel multi-angle remote sensing approach to determine changes in vegetation structure from differences in directional scattering (anisotropy) observed from the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data, atmospherically corrected using the Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). Chapter 1 presents a general overview of the topic, followed by a theoretical background of the most important types of remote sensing data used in this thesis (Chapter 2). Chapter 3 describes the retrieval of BRDF from MODIS data. Chapters 4 and 5 present two distinct approaches using multi-angular MODIS data. In Chapter 4, the potential of using MODIS anisotropy for modeling vegetation roughness from directional scattering of visible and near-infrared (NIR) reflectance was evaluated across different forest types. Derived estimates were compared to independent measures of canopy roughness (entropy) obtained from the: 1) airborne laser scanning (ALS), 2) spaceborne LiDAR Geoscience Laser Altimeter System (GLAS), and 3) spaceborne SeaWinds/QSCAT. GLAS-derived entropy presented strong seasonality and varied between different forest types. Results from Chapter 4 showed linear relationships between MODIS-derived anisotropy and ALS-derived entropy with a coefficient of determination (r$^{2}$) of 0.54 and a root mean squared error (RMSE) of 0.11, even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.5$\leq$r$^{2}$$\leq$0.61; p<0.05), with similar slopes and offsets found throughout the season. The RMSE varied between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements ($\sigma$$^{0}$) from SeaWinds/QuikSCAT were also significant (r$^{2}$=0.59, RMSE=0.11). Results also showed a strong linear relationship of the anisotropy with field- (r$^{2}$=0.70) and LiDAR-based (r$^{2}$=0.88) estimates of leaf area index (LAI). In Chapter 5, the method was used to analyze seasonal changes in the Amazonian forests, comparing them to spatially explicit estimates of onset and length of dry season obtained from the Tropical Rainfall Measurement Mission (TRMM). The results of Chapter 5 showed an increase in vegetation greening during the beginning of dry season (7\% of the basin), which was followed by a decline (browning) later during the dry season (5\% of the basin). Anomalies in vegetation browning were particularly strong during the 2005 and 2010 drought years (10\% of the basin). The magnitude of seasonal changes was significantly affected by regional differences in onset and duration of the dry season. Seasonal changes were much less pronounced when assuming a fixed dry season from June through September across the Amazon basin. The findings reconcile remote sensing studies with field-based observations and model results, supporting the argument that tropical vegetation growth increases during the beginning of the dry season, but declines after extended dry season and drought periods. Overall, we concluded that multi-angle approaches, as the one used in this thesis, are suitable to extrapolate measures of canopy structure across different forest types, and may help quantify drought tolerance and seasonality in the Amazonian forests. |
id |
INPE_d69ba886ed3352ceaa73cc4409184015 |
---|---|
oai_identifier_str |
oai:urlib.net:sid.inpe.br/mtc-m21b/2016/01.19.10.55.50-0 |
network_acronym_str |
INPE |
network_name_str |
Biblioteca Digital de Teses e Dissertações do INPE |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUsing multi-angle modis data to observe vegetation dynamics in the Amazon ForestUtilização de dados multiangulares do sensor MODIS para análise da dinâmica da vegetação na Floresta Amazônica2015-12-08Lênio Soares GalvãoJoão Roberto dos SantosLiana Oighenstein AndersonAlexei I. LyapustinLaerte Guimarães Ferreira JúniorYhasmin Mendes de MouraInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Sensoriamento RemotoINPEBRAmazôniaanisotropiaMODISMAIACsensoriamento remoto multiangularAmazonanisotropymulti-angle remote sensingSeasonality and drought in Amazon rainforests have been controversially discussed in the literature, partially due to a limited ability of current remote sensing techniques to detect drought impacts on tropical vegetation. Detailed knowledge of vegetation structure is required for accurate modeling of terrestrial ecosystem. However, direct measurements of the three dimensional distribution of canopy elements using LiDAR are not widely available, especially in the Amazon region. This thesis explores a novel multi-angle remote sensing approach to determine changes in vegetation structure from differences in directional scattering (anisotropy) observed from the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data, atmospherically corrected using the Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). Chapter 1 presents a general overview of the topic, followed by a theoretical background of the most important types of remote sensing data used in this thesis (Chapter 2). Chapter 3 describes the retrieval of BRDF from MODIS data. Chapters 4 and 5 present two distinct approaches using multi-angular MODIS data. In Chapter 4, the potential of using MODIS anisotropy for modeling vegetation roughness from directional scattering of visible and near-infrared (NIR) reflectance was evaluated across different forest types. Derived estimates were compared to independent measures of canopy roughness (entropy) obtained from the: 1) airborne laser scanning (ALS), 2) spaceborne LiDAR Geoscience Laser Altimeter System (GLAS), and 3) spaceborne SeaWinds/QSCAT. GLAS-derived entropy presented strong seasonality and varied between different forest types. Results from Chapter 4 showed linear relationships between MODIS-derived anisotropy and ALS-derived entropy with a coefficient of determination (r$^{2}$) of 0.54 and a root mean squared error (RMSE) of 0.11, even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.5$\leq$r$^{2}$$\leq$0.61; p<0.05), with similar slopes and offsets found throughout the season. The RMSE varied between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements ($\sigma$$^{0}$) from SeaWinds/QuikSCAT were also significant (r$^{2}$=0.59, RMSE=0.11). Results also showed a strong linear relationship of the anisotropy with field- (r$^{2}$=0.70) and LiDAR-based (r$^{2}$=0.88) estimates of leaf area index (LAI). In Chapter 5, the method was used to analyze seasonal changes in the Amazonian forests, comparing them to spatially explicit estimates of onset and length of dry season obtained from the Tropical Rainfall Measurement Mission (TRMM). The results of Chapter 5 showed an increase in vegetation greening during the beginning of dry season (7\% of the basin), which was followed by a decline (browning) later during the dry season (5\% of the basin). Anomalies in vegetation browning were particularly strong during the 2005 and 2010 drought years (10\% of the basin). The magnitude of seasonal changes was significantly affected by regional differences in onset and duration of the dry season. Seasonal changes were much less pronounced when assuming a fixed dry season from June through September across the Amazon basin. The findings reconcile remote sensing studies with field-based observations and model results, supporting the argument that tropical vegetation growth increases during the beginning of the dry season, but declines after extended dry season and drought periods. Overall, we concluded that multi-angle approaches, as the one used in this thesis, are suitable to extrapolate measures of canopy structure across different forest types, and may help quantify drought tolerance and seasonality in the Amazonian forests.Os temas sazonalidade e secas severas na Amazônia vêm sido discutidos de maneira controversa na literatura, parcialmente devido à habilidade limitada das atuais técnicas de sensoriamento remoto para detecção e análise da resposta de florestas tropicais a estes eventos. O conhecimento detalhado da estrutura da vegetação constitui um dado fundamental para melhoria da modelagem dos ecossistemas terrestres. No entanto, medições diretas da distribuição tridimensional dos elementos do dossel, por exemplo, oriundas de LiDAR, não são disponíveis amplamente, especialmente na região Amazônica. Neste estudo, é proposta uma abordagem de sensoriamento remoto multiangular para avaliar mudanças na estrutura da vegetação a partir de diferenças do espalhamento direcional (anisotropia) observado pelo Moderate Resolution Imaging Spectroradiometer (MODIS), que teve seus dados atmosfericamente corrigidos usando o Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). O Capítulo 1 apresenta uma visão geral do problema, seguido de uma base teórica sobre os mais importantes temas e dados de sensoriamento remoto usados nesta tese (Capítulo 2). O Capítulo 3 descreve o modelo utilizado para recuperação dos dados da Função de Distribuição da Reflectância Bidirecional (BRDF) a partir dos dados MODIS. Os Capítulos 4 e 5 apresentam duas abordagens distintas usando dados multiangulares do MODIS. No Capítulo 4 foi avaliado o potencial dos dados de anisotropia de superfície para modelar a rugosidade dos dosséis através do espalhamento direcional nas bandas de reflectância do visível e infravermelho próximo sobre diferentes tipologias florestais. Foram efetuadas comparações entre os dados de anisotropia em relação à medidas independentes de rugosidade de dosséis (entropia) obtidos de dados: 1) LiDAR aerotransportado (ALS), 2) LiDAR orbital do Geoscience Laser Altimeter System (GLAS), e 3) radar orbital do SeaWinds/QSCAT. Dados de entropia do GLAS apresentaram forte sazonalidade entre as tipologias florestais analisadas. Os resultados mostraram uma relação linear entre os dados de anisotropia derivados do sensor MODIS com os dados de entropia estimados do LiDAR aerotransportado com coeficiente de determinação (r$^{2}$) de 0.54 e erro médio quadrático (RMSE) de 0.11, mesmo em regiões de floresta densa. Relações significantes foram também obtidas entre anisotropia derivada do MODIS e entropia derivada do GLAS (0.52$\leq$r$^{2}$$\leq$0.61; p<0.05), com inclinações e interceptos aproximadamente similares ao longo de diferentes meses. O RMSE variou entre 0.26 e 0.30 (unidades de entropia). A correlação entre anisotropia do MODIS com medidas de retroespalhamento ($\sigma$$^{0}$) do sensor SeaWinds/QuikSCAT foi estatísticamente significante (r$^{2}$=0.59, RMSE=0.11). Os resultados também mostraram uma forte correlação linear entre os dados de anisotropia e as estimativas de índice de área foliar (LAI) obtidas em campo (r$^{2}$=0.70) e a partir de dados LiDAR (r$^{2}$=0.88). No Capítulo 5, analisou-se as variações sazonais das florestas Amazônicas, em que foram calculadas estimativas espacialmente explícitas do início e duração da estação seca na região utilizando dados do Tropical Rainfall Measurement Mission (TRMM). Os resultados mostraram um aumento em verdejamento da vegetação (\emph{greening}) durante o início da estação seca (7\% da bacia), seguido de um subsequente declínio (\emph{browning}) no final da estação seca ($\sim$5\% da bacia). As anomalias negativas (\emph{browning}) foram particularmente mais fortes durantes os anos de seca extrema na região, em 2005 e 2010 ($\sim$10\% da bacia). Os resultados mostraram que a magnitude dessas mudanças sazonais pode ser significantemente afetada pelas diferenças regionais de início e duração da estação seca. Mudanças sazonais foram muito menos pronunciadas quando se assumiu um período fixo de estação seca (junho até setembro) sobre a bacia Amazônica. Os resultados reconciliam estudos baseados em dados de sensoriamento remoto com observações de campo e modelagem, uma vez que fornecem uma base mais sólida sobre o argumento de que a vegetação tropical aumenta seu crescimento durante o início da estação seca, mas sofre um declínio com o seu prolongamento, e especialmente após períodos de secas severas. Como conclusão geral, a abordagem multiangular utilizada neste trabalho se mostrou satisfatória, permitindo a extrapolação de estimativas estruturais do dossel sobre diferentes tipologias florestais, podendo auxiliar na quantificação sobre os impactos e resiliência das florestas Amazônicas em relação a ocorrências de secas severas.http://urlib.net/sid.inpe.br/mtc-m21b/2016/01.19.10.55info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:54:55Zoai:urlib.net:sid.inpe.br/mtc-m21b/2016/01.19.10.55.50-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:54:56.517Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false |
dc.title.en.fl_str_mv |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
dc.title.alternative.pt.fl_str_mv |
Utilização de dados multiangulares do sensor MODIS para análise da dinâmica da vegetação na Floresta Amazônica |
title |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
spellingShingle |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest Yhasmin Mendes de Moura |
title_short |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
title_full |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
title_fullStr |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
title_full_unstemmed |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
title_sort |
Using multi-angle modis data to observe vegetation dynamics in the Amazon Forest |
author |
Yhasmin Mendes de Moura |
author_facet |
Yhasmin Mendes de Moura |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Lênio Soares Galvão |
dc.contributor.advisor2.fl_str_mv |
João Roberto dos Santos |
dc.contributor.referee1.fl_str_mv |
Liana Oighenstein Anderson |
dc.contributor.referee2.fl_str_mv |
Alexei I. Lyapustin |
dc.contributor.referee3.fl_str_mv |
Laerte Guimarães Ferreira Júnior |
dc.contributor.author.fl_str_mv |
Yhasmin Mendes de Moura |
contributor_str_mv |
Lênio Soares Galvão João Roberto dos Santos Liana Oighenstein Anderson Alexei I. Lyapustin Laerte Guimarães Ferreira Júnior |
dc.description.abstract.por.fl_txt_mv |
Seasonality and drought in Amazon rainforests have been controversially discussed in the literature, partially due to a limited ability of current remote sensing techniques to detect drought impacts on tropical vegetation. Detailed knowledge of vegetation structure is required for accurate modeling of terrestrial ecosystem. However, direct measurements of the three dimensional distribution of canopy elements using LiDAR are not widely available, especially in the Amazon region. This thesis explores a novel multi-angle remote sensing approach to determine changes in vegetation structure from differences in directional scattering (anisotropy) observed from the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data, atmospherically corrected using the Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). Chapter 1 presents a general overview of the topic, followed by a theoretical background of the most important types of remote sensing data used in this thesis (Chapter 2). Chapter 3 describes the retrieval of BRDF from MODIS data. Chapters 4 and 5 present two distinct approaches using multi-angular MODIS data. In Chapter 4, the potential of using MODIS anisotropy for modeling vegetation roughness from directional scattering of visible and near-infrared (NIR) reflectance was evaluated across different forest types. Derived estimates were compared to independent measures of canopy roughness (entropy) obtained from the: 1) airborne laser scanning (ALS), 2) spaceborne LiDAR Geoscience Laser Altimeter System (GLAS), and 3) spaceborne SeaWinds/QSCAT. GLAS-derived entropy presented strong seasonality and varied between different forest types. Results from Chapter 4 showed linear relationships between MODIS-derived anisotropy and ALS-derived entropy with a coefficient of determination (r$^{2}$) of 0.54 and a root mean squared error (RMSE) of 0.11, even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.5$\leq$r$^{2}$$\leq$0.61; p<0.05), with similar slopes and offsets found throughout the season. The RMSE varied between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements ($\sigma$$^{0}$) from SeaWinds/QuikSCAT were also significant (r$^{2}$=0.59, RMSE=0.11). Results also showed a strong linear relationship of the anisotropy with field- (r$^{2}$=0.70) and LiDAR-based (r$^{2}$=0.88) estimates of leaf area index (LAI). In Chapter 5, the method was used to analyze seasonal changes in the Amazonian forests, comparing them to spatially explicit estimates of onset and length of dry season obtained from the Tropical Rainfall Measurement Mission (TRMM). The results of Chapter 5 showed an increase in vegetation greening during the beginning of dry season (7\% of the basin), which was followed by a decline (browning) later during the dry season (5\% of the basin). Anomalies in vegetation browning were particularly strong during the 2005 and 2010 drought years (10\% of the basin). The magnitude of seasonal changes was significantly affected by regional differences in onset and duration of the dry season. Seasonal changes were much less pronounced when assuming a fixed dry season from June through September across the Amazon basin. The findings reconcile remote sensing studies with field-based observations and model results, supporting the argument that tropical vegetation growth increases during the beginning of the dry season, but declines after extended dry season and drought periods. Overall, we concluded that multi-angle approaches, as the one used in this thesis, are suitable to extrapolate measures of canopy structure across different forest types, and may help quantify drought tolerance and seasonality in the Amazonian forests. Os temas sazonalidade e secas severas na Amazônia vêm sido discutidos de maneira controversa na literatura, parcialmente devido à habilidade limitada das atuais técnicas de sensoriamento remoto para detecção e análise da resposta de florestas tropicais a estes eventos. O conhecimento detalhado da estrutura da vegetação constitui um dado fundamental para melhoria da modelagem dos ecossistemas terrestres. No entanto, medições diretas da distribuição tridimensional dos elementos do dossel, por exemplo, oriundas de LiDAR, não são disponíveis amplamente, especialmente na região Amazônica. Neste estudo, é proposta uma abordagem de sensoriamento remoto multiangular para avaliar mudanças na estrutura da vegetação a partir de diferenças do espalhamento direcional (anisotropia) observado pelo Moderate Resolution Imaging Spectroradiometer (MODIS), que teve seus dados atmosfericamente corrigidos usando o Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). O Capítulo 1 apresenta uma visão geral do problema, seguido de uma base teórica sobre os mais importantes temas e dados de sensoriamento remoto usados nesta tese (Capítulo 2). O Capítulo 3 descreve o modelo utilizado para recuperação dos dados da Função de Distribuição da Reflectância Bidirecional (BRDF) a partir dos dados MODIS. Os Capítulos 4 e 5 apresentam duas abordagens distintas usando dados multiangulares do MODIS. No Capítulo 4 foi avaliado o potencial dos dados de anisotropia de superfície para modelar a rugosidade dos dosséis através do espalhamento direcional nas bandas de reflectância do visível e infravermelho próximo sobre diferentes tipologias florestais. Foram efetuadas comparações entre os dados de anisotropia em relação à medidas independentes de rugosidade de dosséis (entropia) obtidos de dados: 1) LiDAR aerotransportado (ALS), 2) LiDAR orbital do Geoscience Laser Altimeter System (GLAS), e 3) radar orbital do SeaWinds/QSCAT. Dados de entropia do GLAS apresentaram forte sazonalidade entre as tipologias florestais analisadas. Os resultados mostraram uma relação linear entre os dados de anisotropia derivados do sensor MODIS com os dados de entropia estimados do LiDAR aerotransportado com coeficiente de determinação (r$^{2}$) de 0.54 e erro médio quadrático (RMSE) de 0.11, mesmo em regiões de floresta densa. Relações significantes foram também obtidas entre anisotropia derivada do MODIS e entropia derivada do GLAS (0.52$\leq$r$^{2}$$\leq$0.61; p<0.05), com inclinações e interceptos aproximadamente similares ao longo de diferentes meses. O RMSE variou entre 0.26 e 0.30 (unidades de entropia). A correlação entre anisotropia do MODIS com medidas de retroespalhamento ($\sigma$$^{0}$) do sensor SeaWinds/QuikSCAT foi estatísticamente significante (r$^{2}$=0.59, RMSE=0.11). Os resultados também mostraram uma forte correlação linear entre os dados de anisotropia e as estimativas de índice de área foliar (LAI) obtidas em campo (r$^{2}$=0.70) e a partir de dados LiDAR (r$^{2}$=0.88). No Capítulo 5, analisou-se as variações sazonais das florestas Amazônicas, em que foram calculadas estimativas espacialmente explícitas do início e duração da estação seca na região utilizando dados do Tropical Rainfall Measurement Mission (TRMM). Os resultados mostraram um aumento em verdejamento da vegetação (\emph{greening}) durante o início da estação seca (7\% da bacia), seguido de um subsequente declínio (\emph{browning}) no final da estação seca ($\sim$5\% da bacia). As anomalias negativas (\emph{browning}) foram particularmente mais fortes durantes os anos de seca extrema na região, em 2005 e 2010 ($\sim$10\% da bacia). Os resultados mostraram que a magnitude dessas mudanças sazonais pode ser significantemente afetada pelas diferenças regionais de início e duração da estação seca. Mudanças sazonais foram muito menos pronunciadas quando se assumiu um período fixo de estação seca (junho até setembro) sobre a bacia Amazônica. Os resultados reconciliam estudos baseados em dados de sensoriamento remoto com observações de campo e modelagem, uma vez que fornecem uma base mais sólida sobre o argumento de que a vegetação tropical aumenta seu crescimento durante o início da estação seca, mas sofre um declínio com o seu prolongamento, e especialmente após períodos de secas severas. Como conclusão geral, a abordagem multiangular utilizada neste trabalho se mostrou satisfatória, permitindo a extrapolação de estimativas estruturais do dossel sobre diferentes tipologias florestais, podendo auxiliar na quantificação sobre os impactos e resiliência das florestas Amazônicas em relação a ocorrências de secas severas. |
description |
Seasonality and drought in Amazon rainforests have been controversially discussed in the literature, partially due to a limited ability of current remote sensing techniques to detect drought impacts on tropical vegetation. Detailed knowledge of vegetation structure is required for accurate modeling of terrestrial ecosystem. However, direct measurements of the three dimensional distribution of canopy elements using LiDAR are not widely available, especially in the Amazon region. This thesis explores a novel multi-angle remote sensing approach to determine changes in vegetation structure from differences in directional scattering (anisotropy) observed from the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) data, atmospherically corrected using the Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC). Chapter 1 presents a general overview of the topic, followed by a theoretical background of the most important types of remote sensing data used in this thesis (Chapter 2). Chapter 3 describes the retrieval of BRDF from MODIS data. Chapters 4 and 5 present two distinct approaches using multi-angular MODIS data. In Chapter 4, the potential of using MODIS anisotropy for modeling vegetation roughness from directional scattering of visible and near-infrared (NIR) reflectance was evaluated across different forest types. Derived estimates were compared to independent measures of canopy roughness (entropy) obtained from the: 1) airborne laser scanning (ALS), 2) spaceborne LiDAR Geoscience Laser Altimeter System (GLAS), and 3) spaceborne SeaWinds/QSCAT. GLAS-derived entropy presented strong seasonality and varied between different forest types. Results from Chapter 4 showed linear relationships between MODIS-derived anisotropy and ALS-derived entropy with a coefficient of determination (r$^{2}$) of 0.54 and a root mean squared error (RMSE) of 0.11, even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.5$\leq$r$^{2}$$\leq$0.61; p<0.05), with similar slopes and offsets found throughout the season. The RMSE varied between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements ($\sigma$$^{0}$) from SeaWinds/QuikSCAT were also significant (r$^{2}$=0.59, RMSE=0.11). Results also showed a strong linear relationship of the anisotropy with field- (r$^{2}$=0.70) and LiDAR-based (r$^{2}$=0.88) estimates of leaf area index (LAI). In Chapter 5, the method was used to analyze seasonal changes in the Amazonian forests, comparing them to spatially explicit estimates of onset and length of dry season obtained from the Tropical Rainfall Measurement Mission (TRMM). The results of Chapter 5 showed an increase in vegetation greening during the beginning of dry season (7\% of the basin), which was followed by a decline (browning) later during the dry season (5\% of the basin). Anomalies in vegetation browning were particularly strong during the 2005 and 2010 drought years (10\% of the basin). The magnitude of seasonal changes was significantly affected by regional differences in onset and duration of the dry season. Seasonal changes were much less pronounced when assuming a fixed dry season from June through September across the Amazon basin. The findings reconcile remote sensing studies with field-based observations and model results, supporting the argument that tropical vegetation growth increases during the beginning of the dry season, but declines after extended dry season and drought periods. Overall, we concluded that multi-angle approaches, as the one used in this thesis, are suitable to extrapolate measures of canopy structure across different forest types, and may help quantify drought tolerance and seasonality in the Amazonian forests. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-12-08 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
status_str |
publishedVersion |
format |
doctoralThesis |
dc.identifier.uri.fl_str_mv |
http://urlib.net/sid.inpe.br/mtc-m21b/2016/01.19.10.55 |
url |
http://urlib.net/sid.inpe.br/mtc-m21b/2016/01.19.10.55 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação do INPE em Sensoriamento Remoto |
dc.publisher.initials.fl_str_mv |
INPE |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Instituto Nacional de Pesquisas Espaciais (INPE) |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do INPE instname:Instituto Nacional de Pesquisas Espaciais (INPE) instacron:INPE |
reponame_str |
Biblioteca Digital de Teses e Dissertações do INPE |
collection |
Biblioteca Digital de Teses e Dissertações do INPE |
instname_str |
Instituto Nacional de Pesquisas Espaciais (INPE) |
instacron_str |
INPE |
institution |
INPE |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE) |
repository.mail.fl_str_mv |
|
publisher_program_txtF_mv |
Programa de Pós-Graduação do INPE em Sensoriamento Remoto |
contributor_advisor1_txtF_mv |
Lênio Soares Galvão |
_version_ |
1706809358163116032 |