Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/5624 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies. |
id |
RCAP_28b06bc228299114a30dbd3d6f366236 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/5624 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh.Landsat TMNDVIObject-Based classificationPixel-Based classificationQuickbirdScaleSundarban reserved forestThematic detailsVegetation classificationDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.This study investigates the potential of using very high resolution (VHR) QuickBird data to conduct vegetation classification of the Sundarban mangrove forest in Bangladesh and compares the results with Landsat TM data. Previous studies of vegetation classification in Sundarban involved Landsat images using pixel-based methods. In this study, both pixelbased and object-based methods were used and results were compared to suggest the preferred method that may be used in Sundarban. A hybrid object-based classification method was also developed to simplify the computationally demanding object-based classification, and to provide a greater flexibility during the classification process in absence of extensive ground validation data. The relation between NDVI (Normalized Difference Vegetation Index) and canopy cover was tested in the study area to develop a method to classify canopy cover type using NDVI value. The classification process was also designed with three levels of thematic details to see how different thematic scales affect the analysis results using data of different spatial resolutions. The results show that the classification accuracy using QuickBird data stays higher than that of Landsat TM data. The difference of classification accuracy between QuickBird and Landsat TM remains low when thematic details are low, but becomes progressively pronounced when thematic details are higher. However, at the highest level of thematic details, the classification was not possible to conduct due to a lack of appropriate ground validation data.(...)Caetano, Mário Sílvio Rochinha de AndradeBação, Fernando José Ferreira LucasPla Bañón, FilibertoRUNDiyan, Mohammad Abdullah Abu2011-05-13T14:46:59Z2011-03-032011-03-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/5624enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:08:57Zoai:run.unl.pt:10362/5624Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:08:57Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
title |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
spellingShingle |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. Diyan, Mohammad Abdullah Abu Landsat TM NDVI Object-Based classification Pixel-Based classification Quickbird Scale Sundarban reserved forest Thematic details Vegetation classification |
title_short |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
title_full |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
title_fullStr |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
title_full_unstemmed |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
title_sort |
Multi-scale vegetation classification using earth observation data of the Sundarban mangrove forest, Bangladesh. |
author |
Diyan, Mohammad Abdullah Abu |
author_facet |
Diyan, Mohammad Abdullah Abu |
author_role |
author |
dc.contributor.none.fl_str_mv |
Caetano, Mário Sílvio Rochinha de Andrade Bação, Fernando José Ferreira Lucas Pla Bañón, Filiberto RUN |
dc.contributor.author.fl_str_mv |
Diyan, Mohammad Abdullah Abu |
dc.subject.por.fl_str_mv |
Landsat TM NDVI Object-Based classification Pixel-Based classification Quickbird Scale Sundarban reserved forest Thematic details Vegetation classification |
topic |
Landsat TM NDVI Object-Based classification Pixel-Based classification Quickbird Scale Sundarban reserved forest Thematic details Vegetation classification |
description |
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05-13T14:46:59Z 2011-03-03 2011-03-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/5624 |
url |
http://hdl.handle.net/10362/5624 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545459202260992 |