Optimization in berthing maneuvers of satellites endowed with robotic manipulators

Detalhes bibliográficos
Autor(a) principal: Anderson Brazil Nardin
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do INPE
Texto Completo: http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.09.05.32
Resumo: The study of On-Orbit Servicing (OOS) missions has shown the necessity for developing a methodology able to provide solutions for berthing maneuvers of artificial satellites, being the chaser endowed with a robotic manipulator, applying the multi-objective optimization of conflicting objectives. This work aspires to develop a multi-objective optimization approach that aims to find a balanced solution among conflicting objectives. Movement accuracy, attitude maintenance, maneuver time, and energy consumption from different sources are going to be the selected criteria for optimization due to their great importance, despite the inherent difficulty for simultaneous optimization that they impose on berthing maneuvers of artificial satellites. The approach of this work focuses on the disturbances the robotic arm and base satellite cause to each other. Such disturbances are considered torques generated by the coupling between the robotic manipulator and its base satellite through their distinct control systems. The robotic arm configuration allows diverse applications and notable usefulness in the accomplishment of OOS. The results showed that it was possible to test and validate the developed simulation environment for berthing maneuvers through real-time and hardware-in-the-loop (HIL) simulations using the European Proximity Operations Simulator (EPOS) at German Aerospace Center (DLR). In this scenario, two physical robots play the role of chaser and target satellites involved in the maneuver, while a virtual robotic manipulator coupled to the chaser satellite is simulated by software. This work was successful in creating reliable software for tests of berthing maneuvers since the developed algorithms found balanced solutions among conflicting objectives.
id INPE_e3d8a0647488577aa30d5fd158005dcb
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2020/08.09.05.32.24-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisOptimization in berthing maneuvers of satellites endowed with robotic manipulatorsOtimização em manobras de atracação de satélites dotados de manipuladores robóticos2020-08-07Evandro Marconi RoccoHeike BenninghoffIjar Milagre da FonsecaAguinaldo Cardozo da Costa FilhoAlexandre Carvalho LeiteAnderson Brazil NardinInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Mecânica Espacial e ControleINPEBRmanobras de espaçonavessimulação com hardware na malharobóticaserviços em órbitaotimizaçãospacecraft maneuvershardware-in-the-loop simulationroboticsorbital servicingoptimizationThe study of On-Orbit Servicing (OOS) missions has shown the necessity for developing a methodology able to provide solutions for berthing maneuvers of artificial satellites, being the chaser endowed with a robotic manipulator, applying the multi-objective optimization of conflicting objectives. This work aspires to develop a multi-objective optimization approach that aims to find a balanced solution among conflicting objectives. Movement accuracy, attitude maintenance, maneuver time, and energy consumption from different sources are going to be the selected criteria for optimization due to their great importance, despite the inherent difficulty for simultaneous optimization that they impose on berthing maneuvers of artificial satellites. The approach of this work focuses on the disturbances the robotic arm and base satellite cause to each other. Such disturbances are considered torques generated by the coupling between the robotic manipulator and its base satellite through their distinct control systems. The robotic arm configuration allows diverse applications and notable usefulness in the accomplishment of OOS. The results showed that it was possible to test and validate the developed simulation environment for berthing maneuvers through real-time and hardware-in-the-loop (HIL) simulations using the European Proximity Operations Simulator (EPOS) at German Aerospace Center (DLR). In this scenario, two physical robots play the role of chaser and target satellites involved in the maneuver, while a virtual robotic manipulator coupled to the chaser satellite is simulated by software. This work was successful in creating reliable software for tests of berthing maneuvers since the developed algorithms found balanced solutions among conflicting objectives.O estudo de missões de On-Orbit Servicing (OOS) tem mostrado a necessidade de desenvolver uma metodologia capaz de fornecer soluções para manobras de atracação de satélites artificiais, sendo o perseguidor dotado de um manipulador robótico, aplicando a otimização multiobjetivo de objetivos conflitantes. Este trabalho aspira a desenvolver uma abordagem de otimização multiobjetivo que visa encontrar uma solução equilibrada entre objetivos conflitantes. A precisão do movimento, a manutenção da atitude, o tempo de manobra e o consumo de energia de diferentes fontes serão os critérios selecionados para otimização devido à sua grande importância, apesar da dificuldade inerente à otimização simultânea que eles impõem às manobras de atracação de satélites artificiais. A abordagem deste trabalho enfoca os distúrbios que o braço robótico e o satélite base causam um ao outro. Tais distúrbios são considerados torques gerados pelo acoplamento entre o manipulador robótico e seu satélite base por meio de seus distintos sistemas de controle. A configuração do braço robótico permite diversas aplicações e notável utilidade na realização de OOS. Os resultados mostraram que foi possível testar e validar o ambiente de simulação desenvolvido para manobras de atracação por meio de simulações real-time e com hardware-in-the-loop (HIL) usando o European Proximity Operations Simulator (EPOS) no Centro Aeroespacial Alemão (DLR). Nesse cenário, dois robôs físicos desempenham o papel de satélites caçador e alvo envolvidos na manobra, enquanto um manipulador robótico virtual acoplado ao satélite caçador é simulado por software. Este trabalho foi bem-sucedido na criação de software confiável para testes de manobras de atracação, uma vez que os algoritmos desenvolvidos encontraram soluções equilibradas entre objetivos conflitantes.http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.09.05.32info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:56:21Zoai:urlib.net:sid.inpe.br/mtc-m21c/2020/08.09.05.32.24-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:56:22.261Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Optimization in berthing maneuvers of satellites endowed with robotic manipulators
dc.title.alternative.pt.fl_str_mv Otimização em manobras de atracação de satélites dotados de manipuladores robóticos
title Optimization in berthing maneuvers of satellites endowed with robotic manipulators
spellingShingle Optimization in berthing maneuvers of satellites endowed with robotic manipulators
Anderson Brazil Nardin
title_short Optimization in berthing maneuvers of satellites endowed with robotic manipulators
title_full Optimization in berthing maneuvers of satellites endowed with robotic manipulators
title_fullStr Optimization in berthing maneuvers of satellites endowed with robotic manipulators
title_full_unstemmed Optimization in berthing maneuvers of satellites endowed with robotic manipulators
title_sort Optimization in berthing maneuvers of satellites endowed with robotic manipulators
author Anderson Brazil Nardin
author_facet Anderson Brazil Nardin
author_role author
dc.contributor.advisor1.fl_str_mv Evandro Marconi Rocco
dc.contributor.advisor2.fl_str_mv Heike Benninghoff
dc.contributor.referee1.fl_str_mv Ijar Milagre da Fonseca
dc.contributor.referee2.fl_str_mv Aguinaldo Cardozo da Costa Filho
dc.contributor.referee3.fl_str_mv Alexandre Carvalho Leite
dc.contributor.author.fl_str_mv Anderson Brazil Nardin
contributor_str_mv Evandro Marconi Rocco
Heike Benninghoff
Ijar Milagre da Fonseca
Aguinaldo Cardozo da Costa Filho
Alexandre Carvalho Leite
dc.description.abstract.por.fl_txt_mv The study of On-Orbit Servicing (OOS) missions has shown the necessity for developing a methodology able to provide solutions for berthing maneuvers of artificial satellites, being the chaser endowed with a robotic manipulator, applying the multi-objective optimization of conflicting objectives. This work aspires to develop a multi-objective optimization approach that aims to find a balanced solution among conflicting objectives. Movement accuracy, attitude maintenance, maneuver time, and energy consumption from different sources are going to be the selected criteria for optimization due to their great importance, despite the inherent difficulty for simultaneous optimization that they impose on berthing maneuvers of artificial satellites. The approach of this work focuses on the disturbances the robotic arm and base satellite cause to each other. Such disturbances are considered torques generated by the coupling between the robotic manipulator and its base satellite through their distinct control systems. The robotic arm configuration allows diverse applications and notable usefulness in the accomplishment of OOS. The results showed that it was possible to test and validate the developed simulation environment for berthing maneuvers through real-time and hardware-in-the-loop (HIL) simulations using the European Proximity Operations Simulator (EPOS) at German Aerospace Center (DLR). In this scenario, two physical robots play the role of chaser and target satellites involved in the maneuver, while a virtual robotic manipulator coupled to the chaser satellite is simulated by software. This work was successful in creating reliable software for tests of berthing maneuvers since the developed algorithms found balanced solutions among conflicting objectives.
O estudo de missões de On-Orbit Servicing (OOS) tem mostrado a necessidade de desenvolver uma metodologia capaz de fornecer soluções para manobras de atracação de satélites artificiais, sendo o perseguidor dotado de um manipulador robótico, aplicando a otimização multiobjetivo de objetivos conflitantes. Este trabalho aspira a desenvolver uma abordagem de otimização multiobjetivo que visa encontrar uma solução equilibrada entre objetivos conflitantes. A precisão do movimento, a manutenção da atitude, o tempo de manobra e o consumo de energia de diferentes fontes serão os critérios selecionados para otimização devido à sua grande importância, apesar da dificuldade inerente à otimização simultânea que eles impõem às manobras de atracação de satélites artificiais. A abordagem deste trabalho enfoca os distúrbios que o braço robótico e o satélite base causam um ao outro. Tais distúrbios são considerados torques gerados pelo acoplamento entre o manipulador robótico e seu satélite base por meio de seus distintos sistemas de controle. A configuração do braço robótico permite diversas aplicações e notável utilidade na realização de OOS. Os resultados mostraram que foi possível testar e validar o ambiente de simulação desenvolvido para manobras de atracação por meio de simulações real-time e com hardware-in-the-loop (HIL) usando o European Proximity Operations Simulator (EPOS) no Centro Aeroespacial Alemão (DLR). Nesse cenário, dois robôs físicos desempenham o papel de satélites caçador e alvo envolvidos na manobra, enquanto um manipulador robótico virtual acoplado ao satélite caçador é simulado por software. Este trabalho foi bem-sucedido na criação de software confiável para testes de manobras de atracação, uma vez que os algoritmos desenvolvidos encontraram soluções equilibradas entre objetivos conflitantes.
description The study of On-Orbit Servicing (OOS) missions has shown the necessity for developing a methodology able to provide solutions for berthing maneuvers of artificial satellites, being the chaser endowed with a robotic manipulator, applying the multi-objective optimization of conflicting objectives. This work aspires to develop a multi-objective optimization approach that aims to find a balanced solution among conflicting objectives. Movement accuracy, attitude maintenance, maneuver time, and energy consumption from different sources are going to be the selected criteria for optimization due to their great importance, despite the inherent difficulty for simultaneous optimization that they impose on berthing maneuvers of artificial satellites. The approach of this work focuses on the disturbances the robotic arm and base satellite cause to each other. Such disturbances are considered torques generated by the coupling between the robotic manipulator and its base satellite through their distinct control systems. The robotic arm configuration allows diverse applications and notable usefulness in the accomplishment of OOS. The results showed that it was possible to test and validate the developed simulation environment for berthing maneuvers through real-time and hardware-in-the-loop (HIL) simulations using the European Proximity Operations Simulator (EPOS) at German Aerospace Center (DLR). In this scenario, two physical robots play the role of chaser and target satellites involved in the maneuver, while a virtual robotic manipulator coupled to the chaser satellite is simulated by software. This work was successful in creating reliable software for tests of berthing maneuvers since the developed algorithms found balanced solutions among conflicting objectives.
publishDate 2020
dc.date.issued.fl_str_mv 2020-08-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.09.05.32
url http://urlib.net/sid.inpe.br/mtc-m21c/2020/08.09.05.32
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Mecânica Espacial e Controle
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Mecânica Espacial e Controle
contributor_advisor1_txtF_mv Evandro Marconi Rocco
_version_ 1706809364415774720