Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3

Detalhes bibliográficos
Autor(a) principal: GOMES, MAURILIO P.
Data de Publicação: 2021
Tipo de documento: Tese
Título da fonte: Repositório Institucional do IPEN
Texto Completo: http://repositorio.ipen.br/handle/123456789/32908
Resumo: Friction stir welding (FSW) is a process that has proven to be quite efficient when it comes to joining high-strength aluminum alloys, for instance AA2524-T3. This can be justified by the fact that welding aluminum alloys by FSW technique allows (i) reduction of aircraft weight by eliminating the rivets commonly used and (ii) the use of different aluminum alloys that have low specific density and high mechanical strength. However, even though FSW allows the joining of metallic parts without their effective fusion, which theoretically would result in a defect-free weld bead, the heat resulting from the friction of the welding tool causes significant microstructural changes. In consequence, it results in variations of mechanical properties and corrosion resistance in the welded region. It was evaluated the FSW welding process influence on the corrosion resistance of the joined 2524-T3 aluminum alloy. Different tools have been used, such as: optical and scanning electron microscopy; open circuit potential and electrochemical impedance spectroscopy measurements; and corrosion tests: agar-agar test, intergranular corrosion test, and exfoliation corrosion test. It was proven by different techniques that the thermomechanically/thermal affect zone interface on the retreating side was the most susceptible to corrosion among all investigated zones. A parallel study was developed regarding the corrosion mechanism of pure magnesium. It has been the subject of a considerable amount of work, and despite its ubiquity and history, it remains controversial. This is mainly due to the presence of the negative difference effect (NDE), which increases hydrogen formation when the magnesium is biased on the anodic domain. We was performed a detailed analysis of the electrochemical impedance spectra obtained for the Mg electrode during immersion in a sodium sulfate solution. A model was proposed which took into account the presence of: (i) a thin oxide film (MgO) which progressively covered the Mg electrode surface, (ii) film-free areas where the Mg dissolution occurs in two consecutive steps, (iii) a thick layer of corrosion products (Mg(OH)2), (iv) an adsorbed intermediate Mg+ads which is responsible for the chemical reaction allowing the NDE to be explained. From the impedance data analyses, various parameters were extracted such as the thin oxide film thickness, the resistivity at the metal/oxide film interface and at the oxide film/electrolyte interface, the active surface area as a function of the exposure time to the electrolyte, the thickness of the thick Mg(OH)2 layer and the kinetic constants of the electrochemical reactions.
id IPEN_3da5ba5845f56f47bffb301fbc1e71e2
oai_identifier_str oai:repositorio.ipen.br:123456789/32908
network_acronym_str IPEN
network_name_str Repositório Institucional do IPEN
repository_id_str 4510
spelling Isolda CostaGOMES, MAURILIO P.20212022-03-30T18:58:39Z2022-03-30T18:58:39Zhttp://repositorio.ipen.br/handle/123456789/3290810.11606/T.85.2021.tde-10032022-151859Friction stir welding (FSW) is a process that has proven to be quite efficient when it comes to joining high-strength aluminum alloys, for instance AA2524-T3. This can be justified by the fact that welding aluminum alloys by FSW technique allows (i) reduction of aircraft weight by eliminating the rivets commonly used and (ii) the use of different aluminum alloys that have low specific density and high mechanical strength. However, even though FSW allows the joining of metallic parts without their effective fusion, which theoretically would result in a defect-free weld bead, the heat resulting from the friction of the welding tool causes significant microstructural changes. In consequence, it results in variations of mechanical properties and corrosion resistance in the welded region. It was evaluated the FSW welding process influence on the corrosion resistance of the joined 2524-T3 aluminum alloy. Different tools have been used, such as: optical and scanning electron microscopy; open circuit potential and electrochemical impedance spectroscopy measurements; and corrosion tests: agar-agar test, intergranular corrosion test, and exfoliation corrosion test. It was proven by different techniques that the thermomechanically/thermal affect zone interface on the retreating side was the most susceptible to corrosion among all investigated zones. A parallel study was developed regarding the corrosion mechanism of pure magnesium. It has been the subject of a considerable amount of work, and despite its ubiquity and history, it remains controversial. This is mainly due to the presence of the negative difference effect (NDE), which increases hydrogen formation when the magnesium is biased on the anodic domain. We was performed a detailed analysis of the electrochemical impedance spectra obtained for the Mg electrode during immersion in a sodium sulfate solution. A model was proposed which took into account the presence of: (i) a thin oxide film (MgO) which progressively covered the Mg electrode surface, (ii) film-free areas where the Mg dissolution occurs in two consecutive steps, (iii) a thick layer of corrosion products (Mg(OH)2), (iv) an adsorbed intermediate Mg+ads which is responsible for the chemical reaction allowing the NDE to be explained. From the impedance data analyses, various parameters were extracted such as the thin oxide film thickness, the resistivity at the metal/oxide film interface and at the oxide film/electrolyte interface, the active surface area as a function of the exposure time to the electrolyte, the thickness of the thick Mg(OH)2 layer and the kinetic constants of the electrochemical reactions.Submitted by Celia Satomi Uehara (celia.u-topservice@ipen.br) on 2022-03-30T18:58:39Z No. of bitstreams: 0Made available in DSpace on 2022-03-30T18:58:39Z (GMT). No. of bitstreams: 0Funda????o de Amparo ?? Pesquisa do Estado de S??o Paulo (FAPESP)Coordena????o de Aperfei??oamento de Pessoal de N??vel Superior (CAPES)Tese (Doutorado em Tecnologia Nuclear)IPEN/TInstituto de Pesquisas Energ??ticas e Nucleares - IPEN-CNEN/SPFAPESP: 19/02182-5CAPES-COFECUB: 806-1491aluminium alloysmagnesium compoundsjoiningweldingfrictionstirringmicrostructureelectrochemical corrosioncorrosion protectioncorrosion resistancemechanical propertiesstrength functionsimpedancematerials testingInvestigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3Investiga????o dos mecanismos de corros??o do magn??sio puro e o efeito da soldagem por fric????o e mistura (FSW) na resist??ncia ?? corros??o da liga de alum??nio 2524-T3info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisNS??o Paulo14010600info:eu-repo/semantics/openAccessreponame:Repositório Institucional do IPENinstname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)instacron:IPEN19065GOMES, MAURILIO P.22-03https://www.teses.usp.br/teses/disponiveis/85/85134/tde-10032022-151859/pt-br.php14010GOMES, MAURILIO P.:14010:730:SLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ipen.br/bitstream/123456789/32908/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51123456789/329082022-06-01 14:26:00.489oai:repositorio.ipen.br:123456789/32908Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://repositorio.ipen.br/oai/requestbibl@ipen.bropendoar:45102022-06-01T14:26Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)false
dc.title.pt_BR.fl_str_mv Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
dc.title.alternative.pt_BR.fl_str_mv Investiga????o dos mecanismos de corros??o do magn??sio puro e o efeito da soldagem por fric????o e mistura (FSW) na resist??ncia ?? corros??o da liga de alum??nio 2524-T3
title Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
spellingShingle Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
GOMES, MAURILIO P.
aluminium alloys
magnesium compounds
joining
welding
friction
stirring
microstructure
electrochemical corrosion
corrosion protection
corrosion resistance
mechanical properties
strength functions
impedance
materials testing
title_short Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
title_full Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
title_fullStr Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
title_full_unstemmed Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
title_sort Investigation on the corrosion mechanisms of pure magnesium and the effect of friction stir welding (FSW) on the corrosion resistance of aluminum alloy 2524-T3
author GOMES, MAURILIO P.
author_facet GOMES, MAURILIO P.
author_role author
dc.contributor.advisor1.fl_str_mv Isolda Costa
dc.contributor.author.fl_str_mv GOMES, MAURILIO P.
contributor_str_mv Isolda Costa
dc.subject.por.fl_str_mv aluminium alloys
magnesium compounds
joining
welding
friction
stirring
microstructure
electrochemical corrosion
corrosion protection
corrosion resistance
mechanical properties
strength functions
impedance
materials testing
topic aluminium alloys
magnesium compounds
joining
welding
friction
stirring
microstructure
electrochemical corrosion
corrosion protection
corrosion resistance
mechanical properties
strength functions
impedance
materials testing
description Friction stir welding (FSW) is a process that has proven to be quite efficient when it comes to joining high-strength aluminum alloys, for instance AA2524-T3. This can be justified by the fact that welding aluminum alloys by FSW technique allows (i) reduction of aircraft weight by eliminating the rivets commonly used and (ii) the use of different aluminum alloys that have low specific density and high mechanical strength. However, even though FSW allows the joining of metallic parts without their effective fusion, which theoretically would result in a defect-free weld bead, the heat resulting from the friction of the welding tool causes significant microstructural changes. In consequence, it results in variations of mechanical properties and corrosion resistance in the welded region. It was evaluated the FSW welding process influence on the corrosion resistance of the joined 2524-T3 aluminum alloy. Different tools have been used, such as: optical and scanning electron microscopy; open circuit potential and electrochemical impedance spectroscopy measurements; and corrosion tests: agar-agar test, intergranular corrosion test, and exfoliation corrosion test. It was proven by different techniques that the thermomechanically/thermal affect zone interface on the retreating side was the most susceptible to corrosion among all investigated zones. A parallel study was developed regarding the corrosion mechanism of pure magnesium. It has been the subject of a considerable amount of work, and despite its ubiquity and history, it remains controversial. This is mainly due to the presence of the negative difference effect (NDE), which increases hydrogen formation when the magnesium is biased on the anodic domain. We was performed a detailed analysis of the electrochemical impedance spectra obtained for the Mg electrode during immersion in a sodium sulfate solution. A model was proposed which took into account the presence of: (i) a thin oxide film (MgO) which progressively covered the Mg electrode surface, (ii) film-free areas where the Mg dissolution occurs in two consecutive steps, (iii) a thick layer of corrosion products (Mg(OH)2), (iv) an adsorbed intermediate Mg+ads which is responsible for the chemical reaction allowing the NDE to be explained. From the impedance data analyses, various parameters were extracted such as the thin oxide film thickness, the resistivity at the metal/oxide film interface and at the oxide film/electrolyte interface, the active surface area as a function of the exposure time to the electrolyte, the thickness of the thick Mg(OH)2 layer and the kinetic constants of the electrochemical reactions.
publishDate 2021
dc.date.pt_BR.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2022-03-30T18:58:39Z
dc.date.available.fl_str_mv 2022-03-30T18:58:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ipen.br/handle/123456789/32908
dc.identifier.doi.pt_BR.fl_str_mv 10.11606/T.85.2021.tde-10032022-151859
url http://repositorio.ipen.br/handle/123456789/32908
identifier_str_mv 10.11606/T.85.2021.tde-10032022-151859
dc.relation.authority.fl_str_mv 14010
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 91
dc.coverage.pt_BR.fl_str_mv N
dc.source.none.fl_str_mv reponame:Repositório Institucional do IPEN
instname:Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron:IPEN
instname_str Instituto de Pesquisas Energéticas e Nucleares (IPEN)
instacron_str IPEN
institution IPEN
reponame_str Repositório Institucional do IPEN
collection Repositório Institucional do IPEN
bitstream.url.fl_str_mv http://repositorio.ipen.br/bitstream/123456789/32908/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional do IPEN - Instituto de Pesquisas Energéticas e Nucleares (IPEN)
repository.mail.fl_str_mv bibl@ipen.br
_version_ 1767254255625830400