Improvement of the classification of green asparagus using a Computer Vision System

Detalhes bibliográficos
Autor(a) principal: Salazar-Campos,Orlando
Data de Publicação: 2019
Outros Autores: Salazar-Campos,Johonathan, Menacho,Danny, Morales,Diego, Aredo,Victor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Food Technology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232019000100413
Resumo: Abstract The aim of this work was to improve the classification of green asparagus in an agro-export company by way of a Computer Vision System (CVS). Thus, an image analysis application was developed in the MATLAB® environment to classify green asparagus according to the absence of white spots and the width of the product. The CVS performance was compared with a manual classification using the error in the classification as the quality indicator; the yield from the raw material (%) and line productivity (kg/h) as the production indicators; and the net present value (USD) and internal rate of return (%) as the economic indicators. The CVS classified the green asparagus with 2% error; improved the yield from the raw material from 43% to 45%, and line productivity from 5 to 10 kg/h; and increased the net present value by 102,609.00 USD, yielding an Internal Rate of Return of 156.3%, much higher than the Opportunity Cost of the Capital (8.6%). Hence the classification of green asparagus by a CVS is an efficient and profitable alternative to manual classification.
id ITAL-1_bebf7e2807847fb4ab4454a3b0e98c6d
oai_identifier_str oai:scielo:S1981-67232019000100413
network_acronym_str ITAL-1
network_name_str Brazilian Journal of Food Technology
repository_id_str
spelling Improvement of the classification of green asparagus using a Computer Vision SystemArtificial visionAsparagus officinalisAutomatizationEconomical evaluationProductivityQualityAbstract The aim of this work was to improve the classification of green asparagus in an agro-export company by way of a Computer Vision System (CVS). Thus, an image analysis application was developed in the MATLAB® environment to classify green asparagus according to the absence of white spots and the width of the product. The CVS performance was compared with a manual classification using the error in the classification as the quality indicator; the yield from the raw material (%) and line productivity (kg/h) as the production indicators; and the net present value (USD) and internal rate of return (%) as the economic indicators. The CVS classified the green asparagus with 2% error; improved the yield from the raw material from 43% to 45%, and line productivity from 5 to 10 kg/h; and increased the net present value by 102,609.00 USD, yielding an Internal Rate of Return of 156.3%, much higher than the Opportunity Cost of the Capital (8.6%). Hence the classification of green asparagus by a CVS is an efficient and profitable alternative to manual classification.Instituto de Tecnologia de Alimentos - ITAL2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232019000100413Brazilian Journal of Food Technology v.22 2019reponame:Brazilian Journal of Food Technologyinstname:Instituto de Tecnologia de Alimentos (ITAL)instacron:ITAL10.1590/1981-6723.14018info:eu-repo/semantics/openAccessSalazar-Campos,OrlandoSalazar-Campos,JohonathanMenacho,DannyMorales,DiegoAredo,Victoreng2019-04-22T00:00:00Zoai:scielo:S1981-67232019000100413Revistahttp://bjft.ital.sp.gov.br/https://old.scielo.br/oai/scielo-oai.phpbjftsec@ital.sp.gov.br||bjftsec@ital.sp.gov.br1981-67231516-7275opendoar:2019-04-22T00:00Brazilian Journal of Food Technology - Instituto de Tecnologia de Alimentos (ITAL)false
dc.title.none.fl_str_mv Improvement of the classification of green asparagus using a Computer Vision System
title Improvement of the classification of green asparagus using a Computer Vision System
spellingShingle Improvement of the classification of green asparagus using a Computer Vision System
Salazar-Campos,Orlando
Artificial vision
Asparagus officinalis
Automatization
Economical evaluation
Productivity
Quality
title_short Improvement of the classification of green asparagus using a Computer Vision System
title_full Improvement of the classification of green asparagus using a Computer Vision System
title_fullStr Improvement of the classification of green asparagus using a Computer Vision System
title_full_unstemmed Improvement of the classification of green asparagus using a Computer Vision System
title_sort Improvement of the classification of green asparagus using a Computer Vision System
author Salazar-Campos,Orlando
author_facet Salazar-Campos,Orlando
Salazar-Campos,Johonathan
Menacho,Danny
Morales,Diego
Aredo,Victor
author_role author
author2 Salazar-Campos,Johonathan
Menacho,Danny
Morales,Diego
Aredo,Victor
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Salazar-Campos,Orlando
Salazar-Campos,Johonathan
Menacho,Danny
Morales,Diego
Aredo,Victor
dc.subject.por.fl_str_mv Artificial vision
Asparagus officinalis
Automatization
Economical evaluation
Productivity
Quality
topic Artificial vision
Asparagus officinalis
Automatization
Economical evaluation
Productivity
Quality
description Abstract The aim of this work was to improve the classification of green asparagus in an agro-export company by way of a Computer Vision System (CVS). Thus, an image analysis application was developed in the MATLAB® environment to classify green asparagus according to the absence of white spots and the width of the product. The CVS performance was compared with a manual classification using the error in the classification as the quality indicator; the yield from the raw material (%) and line productivity (kg/h) as the production indicators; and the net present value (USD) and internal rate of return (%) as the economic indicators. The CVS classified the green asparagus with 2% error; improved the yield from the raw material from 43% to 45%, and line productivity from 5 to 10 kg/h; and increased the net present value by 102,609.00 USD, yielding an Internal Rate of Return of 156.3%, much higher than the Opportunity Cost of the Capital (8.6%). Hence the classification of green asparagus by a CVS is an efficient and profitable alternative to manual classification.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232019000100413
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1981-67232019000100413
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1981-6723.14018
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto de Tecnologia de Alimentos - ITAL
publisher.none.fl_str_mv Instituto de Tecnologia de Alimentos - ITAL
dc.source.none.fl_str_mv Brazilian Journal of Food Technology v.22 2019
reponame:Brazilian Journal of Food Technology
instname:Instituto de Tecnologia de Alimentos (ITAL)
instacron:ITAL
instname_str Instituto de Tecnologia de Alimentos (ITAL)
instacron_str ITAL
institution ITAL
reponame_str Brazilian Journal of Food Technology
collection Brazilian Journal of Food Technology
repository.name.fl_str_mv Brazilian Journal of Food Technology - Instituto de Tecnologia de Alimentos (ITAL)
repository.mail.fl_str_mv bjftsec@ital.sp.gov.br||bjftsec@ital.sp.gov.br
_version_ 1752128701783343104