Study of free convection in a porous square cavity using two-energy equation models

Detalhes bibliográficos
Autor(a) principal: Paulo Henrique Salles de Carvalho
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2766
Resumo: In this study the influence of physical properties on heat transfer between the fluid and solid phases for laminar and turbulent flow in a square cavity filled with porous material, heated by one side and cooled by the opposite one is investigated. In order to simulate flow and heat transfer between the phases models, one and two-energy-equation models are used. The transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations were perfomed first for the case of clean cavity, using Laminar and High Reynolds Turbulent model, and the results are in agreement with the existing literature. In the case of porous cavities, simulation runs were performed using the 1EEM and 2EEM. Overall, this study showed that as porosity increases, the value of the average Nusselt at hot wall, for the same Ram, decreases. It is also shown that the average Nusselt decreases, from a critical Rayleigh , as the ratio between the thermal conductivities of the phases increases. Comparisons were made between both energy models and 2EEM shown smaller results for average Nusselt as ks/kf increases. Also found that the critical Rayleigh depends directly on the ratio ks/kf, being larger as it also grows. Still object of this work, it has been discovered that as the porosity decreases and the ratio between thermal conductivities increases, the turbulence within cavity increases as well. In general, the results and analysis obtained by this work can be used in real engineering situations where the porous cavities may be used.
id ITA_12fe55332b539d3a08d0aae31fd10248
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2766
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Study of free convection in a porous square cavity using two-energy equation modelsMateriais porososTransferência de calorEscoamento turbulentoTurbulênciaEscoamento através de meio porosoMecânica dos fluidosFísicaIn this study the influence of physical properties on heat transfer between the fluid and solid phases for laminar and turbulent flow in a square cavity filled with porous material, heated by one side and cooled by the opposite one is investigated. In order to simulate flow and heat transfer between the phases models, one and two-energy-equation models are used. The transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations were perfomed first for the case of clean cavity, using Laminar and High Reynolds Turbulent model, and the results are in agreement with the existing literature. In the case of porous cavities, simulation runs were performed using the 1EEM and 2EEM. Overall, this study showed that as porosity increases, the value of the average Nusselt at hot wall, for the same Ram, decreases. It is also shown that the average Nusselt decreases, from a critical Rayleigh , as the ratio between the thermal conductivities of the phases increases. Comparisons were made between both energy models and 2EEM shown smaller results for average Nusselt as ks/kf increases. Also found that the critical Rayleigh depends directly on the ratio ks/kf, being larger as it also grows. Still object of this work, it has been discovered that as the porosity decreases and the ratio between thermal conductivities increases, the turbulence within cavity increases as well. In general, the results and analysis obtained by this work can be used in real engineering situations where the porous cavities may be used.Instituto Tecnológico de AeronáuticaMarcelo José Santos de LemosPaulo Henrique Salles de Carvalho2013-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2766reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:56Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2766http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:40:00.571Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Study of free convection in a porous square cavity using two-energy equation models
title Study of free convection in a porous square cavity using two-energy equation models
spellingShingle Study of free convection in a porous square cavity using two-energy equation models
Paulo Henrique Salles de Carvalho
Materiais porosos
Transferência de calor
Escoamento turbulento
Turbulência
Escoamento através de meio poroso
Mecânica dos fluidos
Física
title_short Study of free convection in a porous square cavity using two-energy equation models
title_full Study of free convection in a porous square cavity using two-energy equation models
title_fullStr Study of free convection in a porous square cavity using two-energy equation models
title_full_unstemmed Study of free convection in a porous square cavity using two-energy equation models
title_sort Study of free convection in a porous square cavity using two-energy equation models
author Paulo Henrique Salles de Carvalho
author_facet Paulo Henrique Salles de Carvalho
author_role author
dc.contributor.none.fl_str_mv Marcelo José Santos de Lemos
dc.contributor.author.fl_str_mv Paulo Henrique Salles de Carvalho
dc.subject.por.fl_str_mv Materiais porosos
Transferência de calor
Escoamento turbulento
Turbulência
Escoamento através de meio poroso
Mecânica dos fluidos
Física
topic Materiais porosos
Transferência de calor
Escoamento turbulento
Turbulência
Escoamento através de meio poroso
Mecânica dos fluidos
Física
dc.description.none.fl_txt_mv In this study the influence of physical properties on heat transfer between the fluid and solid phases for laminar and turbulent flow in a square cavity filled with porous material, heated by one side and cooled by the opposite one is investigated. In order to simulate flow and heat transfer between the phases models, one and two-energy-equation models are used. The transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations were perfomed first for the case of clean cavity, using Laminar and High Reynolds Turbulent model, and the results are in agreement with the existing literature. In the case of porous cavities, simulation runs were performed using the 1EEM and 2EEM. Overall, this study showed that as porosity increases, the value of the average Nusselt at hot wall, for the same Ram, decreases. It is also shown that the average Nusselt decreases, from a critical Rayleigh , as the ratio between the thermal conductivities of the phases increases. Comparisons were made between both energy models and 2EEM shown smaller results for average Nusselt as ks/kf increases. Also found that the critical Rayleigh depends directly on the ratio ks/kf, being larger as it also grows. Still object of this work, it has been discovered that as the porosity decreases and the ratio between thermal conductivities increases, the turbulence within cavity increases as well. In general, the results and analysis obtained by this work can be used in real engineering situations where the porous cavities may be used.
description In this study the influence of physical properties on heat transfer between the fluid and solid phases for laminar and turbulent flow in a square cavity filled with porous material, heated by one side and cooled by the opposite one is investigated. In order to simulate flow and heat transfer between the phases models, one and two-energy-equation models are used. The transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations were perfomed first for the case of clean cavity, using Laminar and High Reynolds Turbulent model, and the results are in agreement with the existing literature. In the case of porous cavities, simulation runs were performed using the 1EEM and 2EEM. Overall, this study showed that as porosity increases, the value of the average Nusselt at hot wall, for the same Ram, decreases. It is also shown that the average Nusselt decreases, from a critical Rayleigh , as the ratio between the thermal conductivities of the phases increases. Comparisons were made between both energy models and 2EEM shown smaller results for average Nusselt as ks/kf increases. Also found that the critical Rayleigh depends directly on the ratio ks/kf, being larger as it also grows. Still object of this work, it has been discovered that as the porosity decreases and the ratio between thermal conductivities increases, the turbulence within cavity increases as well. In general, the results and analysis obtained by this work can be used in real engineering situations where the porous cavities may be used.
publishDate 2013
dc.date.none.fl_str_mv 2013-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2766
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2766
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Materiais porosos
Transferência de calor
Escoamento turbulento
Turbulência
Escoamento através de meio poroso
Mecânica dos fluidos
Física
_version_ 1706809290285645824