Study of heat transfer in a porous moving bed using a thermal non-equilibrium model

Detalhes bibliográficos
Autor(a) principal: Ana Cristina Pivem
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2149
Resumo: The influence of physical properties on heat transfer between solid and fluid phases is investigated for laminar and turbulent flows in a channel filled with a moving porous material. Concurrent, counterflow and crossflow configurations are analyzed. To simulate flow and heat transfer between phases, a two-energy equation model using a thermal non-equilibrium condition is applied. Transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations are made for laminar model under concurrent and counterflow configurations. Effects of thermal and hydrodynamic properties on heat transfer for several conditions are analyzed and compared with analytical results in the literature. For concurrent laminar flow, simulations indicate that, when the speed of the solid approaches that of the fluid, the strong axial convection of the solid phase, as well as the reduction of the relative velocity, cause an increase in the axial length needed for thermal equilibrium between phases to occur. Longer thermal developing lengths are also found for higher permeability and porosity. Results for a counterflow moving bed indicate that motion of the solid material, contrary to the direction of the fluid, enhances heat transfer between phases. The same effect is observed for smaller Darcy number and porosity, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios. In the case of crossflow, where there are two fluid inlets, more energy is convected into the system in both longitudinal and transversal directions .The fluid temperature reaches the highest values in the symmetry region of the channel. This occurs mainly for high velocity, high thermal capacity and high thermal conductivity ratios between fluid and solid phases. These behaviors were observed for laminar and turbulent flows, in both fully filled and half filled channels. The studies presented here might have applications to problems involving engineering equipment in which a moving porous bed is identified.
id ITA_55c8347e12f25f82bb75e82b34b5d95b
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2149
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Study of heat transfer in a porous moving bed using a thermal non-equilibrium modelTransferência de calorMateriais porososTurbulência atmosféricaMecânica dos fluidosEscoamento turbulentoEquilibrio termodinâmicoFísicaThe influence of physical properties on heat transfer between solid and fluid phases is investigated for laminar and turbulent flows in a channel filled with a moving porous material. Concurrent, counterflow and crossflow configurations are analyzed. To simulate flow and heat transfer between phases, a two-energy equation model using a thermal non-equilibrium condition is applied. Transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations are made for laminar model under concurrent and counterflow configurations. Effects of thermal and hydrodynamic properties on heat transfer for several conditions are analyzed and compared with analytical results in the literature. For concurrent laminar flow, simulations indicate that, when the speed of the solid approaches that of the fluid, the strong axial convection of the solid phase, as well as the reduction of the relative velocity, cause an increase in the axial length needed for thermal equilibrium between phases to occur. Longer thermal developing lengths are also found for higher permeability and porosity. Results for a counterflow moving bed indicate that motion of the solid material, contrary to the direction of the fluid, enhances heat transfer between phases. The same effect is observed for smaller Darcy number and porosity, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios. In the case of crossflow, where there are two fluid inlets, more energy is convected into the system in both longitudinal and transversal directions .The fluid temperature reaches the highest values in the symmetry region of the channel. This occurs mainly for high velocity, high thermal capacity and high thermal conductivity ratios between fluid and solid phases. These behaviors were observed for laminar and turbulent flows, in both fully filled and half filled channels. The studies presented here might have applications to problems involving engineering equipment in which a moving porous bed is identified.Instituto Tecnológico de AeronáuticaMarcelo José Santos de LemosAna Cristina Pivem2012-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2149reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:04:16Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2149http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:38:20.87Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
title Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
spellingShingle Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
Ana Cristina Pivem
Transferência de calor
Materiais porosos
Turbulência atmosférica
Mecânica dos fluidos
Escoamento turbulento
Equilibrio termodinâmico
Física
title_short Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
title_full Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
title_fullStr Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
title_full_unstemmed Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
title_sort Study of heat transfer in a porous moving bed using a thermal non-equilibrium model
author Ana Cristina Pivem
author_facet Ana Cristina Pivem
author_role author
dc.contributor.none.fl_str_mv Marcelo José Santos de Lemos
dc.contributor.author.fl_str_mv Ana Cristina Pivem
dc.subject.por.fl_str_mv Transferência de calor
Materiais porosos
Turbulência atmosférica
Mecânica dos fluidos
Escoamento turbulento
Equilibrio termodinâmico
Física
topic Transferência de calor
Materiais porosos
Turbulência atmosférica
Mecânica dos fluidos
Escoamento turbulento
Equilibrio termodinâmico
Física
dc.description.none.fl_txt_mv The influence of physical properties on heat transfer between solid and fluid phases is investigated for laminar and turbulent flows in a channel filled with a moving porous material. Concurrent, counterflow and crossflow configurations are analyzed. To simulate flow and heat transfer between phases, a two-energy equation model using a thermal non-equilibrium condition is applied. Transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations are made for laminar model under concurrent and counterflow configurations. Effects of thermal and hydrodynamic properties on heat transfer for several conditions are analyzed and compared with analytical results in the literature. For concurrent laminar flow, simulations indicate that, when the speed of the solid approaches that of the fluid, the strong axial convection of the solid phase, as well as the reduction of the relative velocity, cause an increase in the axial length needed for thermal equilibrium between phases to occur. Longer thermal developing lengths are also found for higher permeability and porosity. Results for a counterflow moving bed indicate that motion of the solid material, contrary to the direction of the fluid, enhances heat transfer between phases. The same effect is observed for smaller Darcy number and porosity, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios. In the case of crossflow, where there are two fluid inlets, more energy is convected into the system in both longitudinal and transversal directions .The fluid temperature reaches the highest values in the symmetry region of the channel. This occurs mainly for high velocity, high thermal capacity and high thermal conductivity ratios between fluid and solid phases. These behaviors were observed for laminar and turbulent flows, in both fully filled and half filled channels. The studies presented here might have applications to problems involving engineering equipment in which a moving porous bed is identified.
description The influence of physical properties on heat transfer between solid and fluid phases is investigated for laminar and turbulent flows in a channel filled with a moving porous material. Concurrent, counterflow and crossflow configurations are analyzed. To simulate flow and heat transfer between phases, a two-energy equation model using a thermal non-equilibrium condition is applied. Transport equations are discretized using the control volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. Validations are made for laminar model under concurrent and counterflow configurations. Effects of thermal and hydrodynamic properties on heat transfer for several conditions are analyzed and compared with analytical results in the literature. For concurrent laminar flow, simulations indicate that, when the speed of the solid approaches that of the fluid, the strong axial convection of the solid phase, as well as the reduction of the relative velocity, cause an increase in the axial length needed for thermal equilibrium between phases to occur. Longer thermal developing lengths are also found for higher permeability and porosity. Results for a counterflow moving bed indicate that motion of the solid material, contrary to the direction of the fluid, enhances heat transfer between phases. The same effect is observed for smaller Darcy number and porosity, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios. In the case of crossflow, where there are two fluid inlets, more energy is convected into the system in both longitudinal and transversal directions .The fluid temperature reaches the highest values in the symmetry region of the channel. This occurs mainly for high velocity, high thermal capacity and high thermal conductivity ratios between fluid and solid phases. These behaviors were observed for laminar and turbulent flows, in both fully filled and half filled channels. The studies presented here might have applications to problems involving engineering equipment in which a moving porous bed is identified.
publishDate 2012
dc.date.none.fl_str_mv 2012-08-08
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2149
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2149
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Transferência de calor
Materiais porosos
Turbulência atmosférica
Mecânica dos fluidos
Escoamento turbulento
Equilibrio termodinâmico
Física
_version_ 1706809280029523968