Métodos para redução de modelos
Autor(a) principal: | |
---|---|
Data de Publicação: | 1991 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do ITA |
Texto Completo: | http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1834 |
Resumo: | Este trabalho aborda, inicialmente, alguns métodos clássicos de redução de modelos, em particular os métodos de Davison [3] e o de Marshall [4]. Para esses dois métodos, foram propostos, por Gopal e Mehta [5], dois critérios de seleção dos auto-valores que levam em consideração os resíduos associados aos auto-valores e não apenas a dominância dos auto-valores. Porém, eses critérios apresentaram resultados deficientes para muitos sistemas dinâmicos, como mostrado em [10]. Para corrigir essas deficiências, no capítulo 3 propõe-se dois critérios de seleção dos auto-valroes, um para o método de Davison e o outro para o método de Marshall. Adicionalmente, apresenta -se alguns exemplos de aplicação que ilustram as vantagens alcançadas com essas novas propostas. No capítulo 4, aborda se um método moderno de redução de modelos propostos por Moore [7], que utiliza a realização balanceada. Esse método possui um critério para escolha da ordem do modelo reduzido que não é bem definido, ou seja, a ordem do modelo reduzido, r, deve ser tal que O-r ]]Or+1, onde O é o r-ésimo valor singular do sistema dinâmico. Porém, não se estabelece regras para quantificar essa relação. Para sanar esta deficiência, no capitulo 4 é proposto um índice de desempenho que relaciona o desempenho dinâmico do modelo reduzido com a sua ordem, sem a necessidade de se calcular todos os modelos reduzidos possíveis. Com isso consegue se um diagrama de barras que orienta na escolha da ordem do modelo reduzido. Utilizando a realização balanceada de [7], Guth e Rake [12] propuseram, recentemente, um método de redução de modelos que preserva o ganho em regime do modelo original. No capítulo 4 apresenta se algumas comparações desse método com outro utilizando a redução de Marshall que garante o mesmo ganho, com menor carga computacional. No que se refere ao problema de redução do controlador, analisa-se o método LQG balanceado que possui boas propriedades de robustez. Adicionalmente, apresenta-se algumas considerações quanto ao seu critério de seleção da ordem do controlador reduzido que garante a estabilidade do sistemacompensado com esse controlador. Finalmente, apresenta-se no capítulo 6 algumas conclusões e sugestões para trabalhos futuros. |
id |
ITA_9e184e2d19d05e0b15231c5c86230ac6 |
---|---|
oai_identifier_str |
oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1834 |
network_acronym_str |
ITA |
network_name_str |
Biblioteca Digital de Teses e Dissertações do ITA |
spelling |
Métodos para redução de modelosMatemática aplicadaMatemática computacionalModelos matemáticosMétodos matemáticosMatemáticaEste trabalho aborda, inicialmente, alguns métodos clássicos de redução de modelos, em particular os métodos de Davison [3] e o de Marshall [4]. Para esses dois métodos, foram propostos, por Gopal e Mehta [5], dois critérios de seleção dos auto-valores que levam em consideração os resíduos associados aos auto-valores e não apenas a dominância dos auto-valores. Porém, eses critérios apresentaram resultados deficientes para muitos sistemas dinâmicos, como mostrado em [10]. Para corrigir essas deficiências, no capítulo 3 propõe-se dois critérios de seleção dos auto-valroes, um para o método de Davison e o outro para o método de Marshall. Adicionalmente, apresenta -se alguns exemplos de aplicação que ilustram as vantagens alcançadas com essas novas propostas. No capítulo 4, aborda se um método moderno de redução de modelos propostos por Moore [7], que utiliza a realização balanceada. Esse método possui um critério para escolha da ordem do modelo reduzido que não é bem definido, ou seja, a ordem do modelo reduzido, r, deve ser tal que O-r ]]Or+1, onde O é o r-ésimo valor singular do sistema dinâmico. Porém, não se estabelece regras para quantificar essa relação. Para sanar esta deficiência, no capitulo 4 é proposto um índice de desempenho que relaciona o desempenho dinâmico do modelo reduzido com a sua ordem, sem a necessidade de se calcular todos os modelos reduzidos possíveis. Com isso consegue se um diagrama de barras que orienta na escolha da ordem do modelo reduzido. Utilizando a realização balanceada de [7], Guth e Rake [12] propuseram, recentemente, um método de redução de modelos que preserva o ganho em regime do modelo original. No capítulo 4 apresenta se algumas comparações desse método com outro utilizando a redução de Marshall que garante o mesmo ganho, com menor carga computacional. No que se refere ao problema de redução do controlador, analisa-se o método LQG balanceado que possui boas propriedades de robustez. Adicionalmente, apresenta-se algumas considerações quanto ao seu critério de seleção da ordem do controlador reduzido que garante a estabilidade do sistemacompensado com esse controlador. Finalmente, apresenta-se no capítulo 6 algumas conclusões e sugestões para trabalhos futuros.Instituto Tecnológico de AeronáuticaElder Moreira HemerlyEdvaldo Assunção1991-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1834reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAporinfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:02:51Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1834http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:37:28.301Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue |
dc.title.none.fl_str_mv |
Métodos para redução de modelos |
title |
Métodos para redução de modelos |
spellingShingle |
Métodos para redução de modelos Edvaldo Assunção Matemática aplicada Matemática computacional Modelos matemáticos Métodos matemáticos Matemática |
title_short |
Métodos para redução de modelos |
title_full |
Métodos para redução de modelos |
title_fullStr |
Métodos para redução de modelos |
title_full_unstemmed |
Métodos para redução de modelos |
title_sort |
Métodos para redução de modelos |
author |
Edvaldo Assunção |
author_facet |
Edvaldo Assunção |
author_role |
author |
dc.contributor.none.fl_str_mv |
Elder Moreira Hemerly |
dc.contributor.author.fl_str_mv |
Edvaldo Assunção |
dc.subject.por.fl_str_mv |
Matemática aplicada Matemática computacional Modelos matemáticos Métodos matemáticos Matemática |
topic |
Matemática aplicada Matemática computacional Modelos matemáticos Métodos matemáticos Matemática |
dc.description.none.fl_txt_mv |
Este trabalho aborda, inicialmente, alguns métodos clássicos de redução de modelos, em particular os métodos de Davison [3] e o de Marshall [4]. Para esses dois métodos, foram propostos, por Gopal e Mehta [5], dois critérios de seleção dos auto-valores que levam em consideração os resíduos associados aos auto-valores e não apenas a dominância dos auto-valores. Porém, eses critérios apresentaram resultados deficientes para muitos sistemas dinâmicos, como mostrado em [10]. Para corrigir essas deficiências, no capítulo 3 propõe-se dois critérios de seleção dos auto-valroes, um para o método de Davison e o outro para o método de Marshall. Adicionalmente, apresenta -se alguns exemplos de aplicação que ilustram as vantagens alcançadas com essas novas propostas. No capítulo 4, aborda se um método moderno de redução de modelos propostos por Moore [7], que utiliza a realização balanceada. Esse método possui um critério para escolha da ordem do modelo reduzido que não é bem definido, ou seja, a ordem do modelo reduzido, r, deve ser tal que O-r ]]Or+1, onde O é o r-ésimo valor singular do sistema dinâmico. Porém, não se estabelece regras para quantificar essa relação. Para sanar esta deficiência, no capitulo 4 é proposto um índice de desempenho que relaciona o desempenho dinâmico do modelo reduzido com a sua ordem, sem a necessidade de se calcular todos os modelos reduzidos possíveis. Com isso consegue se um diagrama de barras que orienta na escolha da ordem do modelo reduzido. Utilizando a realização balanceada de [7], Guth e Rake [12] propuseram, recentemente, um método de redução de modelos que preserva o ganho em regime do modelo original. No capítulo 4 apresenta se algumas comparações desse método com outro utilizando a redução de Marshall que garante o mesmo ganho, com menor carga computacional. No que se refere ao problema de redução do controlador, analisa-se o método LQG balanceado que possui boas propriedades de robustez. Adicionalmente, apresenta-se algumas considerações quanto ao seu critério de seleção da ordem do controlador reduzido que garante a estabilidade do sistemacompensado com esse controlador. Finalmente, apresenta-se no capítulo 6 algumas conclusões e sugestões para trabalhos futuros. |
description |
Este trabalho aborda, inicialmente, alguns métodos clássicos de redução de modelos, em particular os métodos de Davison [3] e o de Marshall [4]. Para esses dois métodos, foram propostos, por Gopal e Mehta [5], dois critérios de seleção dos auto-valores que levam em consideração os resíduos associados aos auto-valores e não apenas a dominância dos auto-valores. Porém, eses critérios apresentaram resultados deficientes para muitos sistemas dinâmicos, como mostrado em [10]. Para corrigir essas deficiências, no capítulo 3 propõe-se dois critérios de seleção dos auto-valroes, um para o método de Davison e o outro para o método de Marshall. Adicionalmente, apresenta -se alguns exemplos de aplicação que ilustram as vantagens alcançadas com essas novas propostas. No capítulo 4, aborda se um método moderno de redução de modelos propostos por Moore [7], que utiliza a realização balanceada. Esse método possui um critério para escolha da ordem do modelo reduzido que não é bem definido, ou seja, a ordem do modelo reduzido, r, deve ser tal que O-r ]]Or+1, onde O é o r-ésimo valor singular do sistema dinâmico. Porém, não se estabelece regras para quantificar essa relação. Para sanar esta deficiência, no capitulo 4 é proposto um índice de desempenho que relaciona o desempenho dinâmico do modelo reduzido com a sua ordem, sem a necessidade de se calcular todos os modelos reduzidos possíveis. Com isso consegue se um diagrama de barras que orienta na escolha da ordem do modelo reduzido. Utilizando a realização balanceada de [7], Guth e Rake [12] propuseram, recentemente, um método de redução de modelos que preserva o ganho em regime do modelo original. No capítulo 4 apresenta se algumas comparações desse método com outro utilizando a redução de Marshall que garante o mesmo ganho, com menor carga computacional. No que se refere ao problema de redução do controlador, analisa-se o método LQG balanceado que possui boas propriedades de robustez. Adicionalmente, apresenta-se algumas considerações quanto ao seu critério de seleção da ordem do controlador reduzido que garante a estabilidade do sistemacompensado com esse controlador. Finalmente, apresenta-se no capítulo 6 algumas conclusões e sugestões para trabalhos futuros. |
publishDate |
1991 |
dc.date.none.fl_str_mv |
1991-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1834 |
url |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1834 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
publisher.none.fl_str_mv |
Instituto Tecnológico de Aeronáutica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do ITA instname:Instituto Tecnológico de Aeronáutica instacron:ITA |
reponame_str |
Biblioteca Digital de Teses e Dissertações do ITA |
collection |
Biblioteca Digital de Teses e Dissertações do ITA |
instname_str |
Instituto Tecnológico de Aeronáutica |
instacron_str |
ITA |
institution |
ITA |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica |
repository.mail.fl_str_mv |
|
subject_por_txtF_mv |
Matemática aplicada Matemática computacional Modelos matemáticos Métodos matemáticos Matemática |
_version_ |
1706809275212365824 |