Preliminary design methodology for multi fuel gas turbine combustors.

Detalhes bibliográficos
Autor(a) principal: Juliana Andrea Niño Navia
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1047
Resumo: The combustors for gas turbines have been traditionally designed through trial and error, which is a time consuming and expensive process. With the development of computers and new simulation techniques the design process has been improved considerably. However, the design of combustors for gas turbines still remains an iterative process, which requires a broad knowledge of engine operating conditions and the interaction of their components with the engine components. This work presents the establishment of a methodology for preliminary design for gas turbine combustor, based on the methodology proposed by Melconian e Moldak and the application of a chemical reactors network (CRN), this last one in order to establish the temperature profile of the gases into combustor. Originally, the methodology proposed by Melconian e Moldak uses kerosene as fuel. For this reason, the proposed methodology in this work was adapted to consider different types of fuel. This methodology is capable to set the basic geometric parameters and providing a basic configuration of a combustor considering changes in operational loads. Some cases have been developed, which allowed verifying the implementation of the proposed methodology and the CRN. The first case was used as validation method and was employing a multi-can combustor type, which operates with kerosene as fuel based on example proposed by Melconian e Moldak. The second case corresponds to an annular combustor for an aircraft engine which operates with kerosene, natural gas and ethanol. For each of these fuels was carried out a preliminary design of combustor. The third case is a can annular combustor for application in an industrial gas turbine using natural gas, ethanol and kerosene as fuels. A step by step design methodology is presented in this work. It is important to mention that the proposed methodology is for conventional combustors.
id ITA_a289ac684f4252ce76ce474e8c85fac1
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1047
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Preliminary design methodology for multi fuel gas turbine combustors.CombustoresTurbinas a gásReatores químicosSíntese de redesControle de processosEngenharia mecânicaThe combustors for gas turbines have been traditionally designed through trial and error, which is a time consuming and expensive process. With the development of computers and new simulation techniques the design process has been improved considerably. However, the design of combustors for gas turbines still remains an iterative process, which requires a broad knowledge of engine operating conditions and the interaction of their components with the engine components. This work presents the establishment of a methodology for preliminary design for gas turbine combustor, based on the methodology proposed by Melconian e Moldak and the application of a chemical reactors network (CRN), this last one in order to establish the temperature profile of the gases into combustor. Originally, the methodology proposed by Melconian e Moldak uses kerosene as fuel. For this reason, the proposed methodology in this work was adapted to consider different types of fuel. This methodology is capable to set the basic geometric parameters and providing a basic configuration of a combustor considering changes in operational loads. Some cases have been developed, which allowed verifying the implementation of the proposed methodology and the CRN. The first case was used as validation method and was employing a multi-can combustor type, which operates with kerosene as fuel based on example proposed by Melconian e Moldak. The second case corresponds to an annular combustor for an aircraft engine which operates with kerosene, natural gas and ethanol. For each of these fuels was carried out a preliminary design of combustor. The third case is a can annular combustor for application in an industrial gas turbine using natural gas, ethanol and kerosene as fuels. A step by step design methodology is presented in this work. It is important to mention that the proposed methodology is for conventional combustors.Instituto Tecnológico de AeronáuticaPedro Teixeira LacavaJuliana Andrea Niño Navia2010-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1047reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:02:03Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1047http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:35:07.304Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Preliminary design methodology for multi fuel gas turbine combustors.
title Preliminary design methodology for multi fuel gas turbine combustors.
spellingShingle Preliminary design methodology for multi fuel gas turbine combustors.
Juliana Andrea Niño Navia
Combustores
Turbinas a gás
Reatores químicos
Síntese de redes
Controle de processos
Engenharia mecânica
title_short Preliminary design methodology for multi fuel gas turbine combustors.
title_full Preliminary design methodology for multi fuel gas turbine combustors.
title_fullStr Preliminary design methodology for multi fuel gas turbine combustors.
title_full_unstemmed Preliminary design methodology for multi fuel gas turbine combustors.
title_sort Preliminary design methodology for multi fuel gas turbine combustors.
author Juliana Andrea Niño Navia
author_facet Juliana Andrea Niño Navia
author_role author
dc.contributor.none.fl_str_mv Pedro Teixeira Lacava
dc.contributor.author.fl_str_mv Juliana Andrea Niño Navia
dc.subject.por.fl_str_mv Combustores
Turbinas a gás
Reatores químicos
Síntese de redes
Controle de processos
Engenharia mecânica
topic Combustores
Turbinas a gás
Reatores químicos
Síntese de redes
Controle de processos
Engenharia mecânica
dc.description.none.fl_txt_mv The combustors for gas turbines have been traditionally designed through trial and error, which is a time consuming and expensive process. With the development of computers and new simulation techniques the design process has been improved considerably. However, the design of combustors for gas turbines still remains an iterative process, which requires a broad knowledge of engine operating conditions and the interaction of their components with the engine components. This work presents the establishment of a methodology for preliminary design for gas turbine combustor, based on the methodology proposed by Melconian e Moldak and the application of a chemical reactors network (CRN), this last one in order to establish the temperature profile of the gases into combustor. Originally, the methodology proposed by Melconian e Moldak uses kerosene as fuel. For this reason, the proposed methodology in this work was adapted to consider different types of fuel. This methodology is capable to set the basic geometric parameters and providing a basic configuration of a combustor considering changes in operational loads. Some cases have been developed, which allowed verifying the implementation of the proposed methodology and the CRN. The first case was used as validation method and was employing a multi-can combustor type, which operates with kerosene as fuel based on example proposed by Melconian e Moldak. The second case corresponds to an annular combustor for an aircraft engine which operates with kerosene, natural gas and ethanol. For each of these fuels was carried out a preliminary design of combustor. The third case is a can annular combustor for application in an industrial gas turbine using natural gas, ethanol and kerosene as fuels. A step by step design methodology is presented in this work. It is important to mention that the proposed methodology is for conventional combustors.
description The combustors for gas turbines have been traditionally designed through trial and error, which is a time consuming and expensive process. With the development of computers and new simulation techniques the design process has been improved considerably. However, the design of combustors for gas turbines still remains an iterative process, which requires a broad knowledge of engine operating conditions and the interaction of their components with the engine components. This work presents the establishment of a methodology for preliminary design for gas turbine combustor, based on the methodology proposed by Melconian e Moldak and the application of a chemical reactors network (CRN), this last one in order to establish the temperature profile of the gases into combustor. Originally, the methodology proposed by Melconian e Moldak uses kerosene as fuel. For this reason, the proposed methodology in this work was adapted to consider different types of fuel. This methodology is capable to set the basic geometric parameters and providing a basic configuration of a combustor considering changes in operational loads. Some cases have been developed, which allowed verifying the implementation of the proposed methodology and the CRN. The first case was used as validation method and was employing a multi-can combustor type, which operates with kerosene as fuel based on example proposed by Melconian e Moldak. The second case corresponds to an annular combustor for an aircraft engine which operates with kerosene, natural gas and ethanol. For each of these fuels was carried out a preliminary design of combustor. The third case is a can annular combustor for application in an industrial gas turbine using natural gas, ethanol and kerosene as fuels. A step by step design methodology is presented in this work. It is important to mention that the proposed methodology is for conventional combustors.
publishDate 2010
dc.date.none.fl_str_mv 2010-09-21
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1047
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1047
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Combustores
Turbinas a gás
Reatores químicos
Síntese de redes
Controle de processos
Engenharia mecânica
_version_ 1706809265505697792