Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.

Detalhes bibliográficos
Autor(a) principal: Daniel Pisani Dias
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações do ITA
Texto Completo: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1087
Resumo: Guiding arriving flights through congested terminal airspace has always been a challenge. As traffic builds up, controllers must often move traffic away from the airport until they can bring those flights in for landing, causing inefficiencies. A widespread implementation of Continuous Descent Approach (CDA) would result in significant reductions in environmental impact and airline operating costs, however, a significant barrier to system wide CDA implementation is the difficulty to merge and space flights so that the CDA is flown safely. The en route metering essentially allows flights to absorb any necessary arrival delays en route, with transition to the terminal area in a pre-planned sequence. When delays would be imposed, the priority of landing would be based on the calculated time of arrival for each flight at the last metering fix, using a First-Come-First-Served policy. The spacing between successive arriving flights needs to be sufficient to allow for other flights downstream to merge into the overall flow while maintaining the minimum required separation according to the applicable rules. This work describes the fundamental design of a decision-support tool and procedures for CDA in the Sao Paulo Terminal Radar Approach Control (SP-TRACON) with flight spacing based on Required Time of Arrival (RTA) at a metering fix. A linear programming model was used to establish required time of arrival at TRACON entry points to provide adequate separation on final approach following the Standard Terminal Arrival Routes (STARs). For this purpose, typical actual traffic data approaching to airports in the SP-TRACON were used to apply the sequence model and evaluate the potential benefits on throughput and delays for Sao Paulo - Guarulhos airport. Using the ATFM methodology developed in this work, the general delays applied to the traffics of the two selected days were 53.5% and 55.1% lower than the delays observed with ATFM measures used by air traffic controllers. For the peak hours considered, the methodology provided 25.5% and 30.1% delay reduction. The air traffic controllers role in the process and workload reduction is also discussed.
id ITA_f8d10f11a280d3ab21443e3ca00ccb9e
oai_identifier_str oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1087
network_acronym_str ITA
network_name_str Biblioteca Digital de Teses e Dissertações do ITA
spelling Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.Controle de aproximaçãoControle de tráfego aéreoSistemas de apoio à decisãoCapacidade do sistema de guiamentoTransportesGuiding arriving flights through congested terminal airspace has always been a challenge. As traffic builds up, controllers must often move traffic away from the airport until they can bring those flights in for landing, causing inefficiencies. A widespread implementation of Continuous Descent Approach (CDA) would result in significant reductions in environmental impact and airline operating costs, however, a significant barrier to system wide CDA implementation is the difficulty to merge and space flights so that the CDA is flown safely. The en route metering essentially allows flights to absorb any necessary arrival delays en route, with transition to the terminal area in a pre-planned sequence. When delays would be imposed, the priority of landing would be based on the calculated time of arrival for each flight at the last metering fix, using a First-Come-First-Served policy. The spacing between successive arriving flights needs to be sufficient to allow for other flights downstream to merge into the overall flow while maintaining the minimum required separation according to the applicable rules. This work describes the fundamental design of a decision-support tool and procedures for CDA in the Sao Paulo Terminal Radar Approach Control (SP-TRACON) with flight spacing based on Required Time of Arrival (RTA) at a metering fix. A linear programming model was used to establish required time of arrival at TRACON entry points to provide adequate separation on final approach following the Standard Terminal Arrival Routes (STARs). For this purpose, typical actual traffic data approaching to airports in the SP-TRACON were used to apply the sequence model and evaluate the potential benefits on throughput and delays for Sao Paulo - Guarulhos airport. Using the ATFM methodology developed in this work, the general delays applied to the traffics of the two selected days were 53.5% and 55.1% lower than the delays observed with ATFM measures used by air traffic controllers. For the peak hours considered, the methodology provided 25.5% and 30.1% delay reduction. The air traffic controllers role in the process and workload reduction is also discussed.Instituto Tecnológico de AeronáuticaCarlos MüllerDaniel Pisani Dias2010-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1087reponame:Biblioteca Digital de Teses e Dissertações do ITAinstname:Instituto Tecnológico de Aeronáuticainstacron:ITAenginfo:eu-repo/semantics/openAccessapplication/pdf2019-02-02T14:02:34Zoai:agregador.ibict.br.BDTD_ITA:oai:ita.br:1087http://oai.bdtd.ibict.br/requestopendoar:null2020-05-28 19:35:16.956Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáuticatrue
dc.title.none.fl_str_mv Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
title Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
spellingShingle Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
Daniel Pisani Dias
Controle de aproximação
Controle de tráfego aéreo
Sistemas de apoio à decisão
Capacidade do sistema de guiamento
Transportes
title_short Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
title_full Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
title_fullStr Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
title_full_unstemmed Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
title_sort Aircraft spacing for continuous descent approach in a terminal area based on required time of arrival at a metering fix.
author Daniel Pisani Dias
author_facet Daniel Pisani Dias
author_role author
dc.contributor.none.fl_str_mv Carlos Müller
dc.contributor.author.fl_str_mv Daniel Pisani Dias
dc.subject.por.fl_str_mv Controle de aproximação
Controle de tráfego aéreo
Sistemas de apoio à decisão
Capacidade do sistema de guiamento
Transportes
topic Controle de aproximação
Controle de tráfego aéreo
Sistemas de apoio à decisão
Capacidade do sistema de guiamento
Transportes
dc.description.none.fl_txt_mv Guiding arriving flights through congested terminal airspace has always been a challenge. As traffic builds up, controllers must often move traffic away from the airport until they can bring those flights in for landing, causing inefficiencies. A widespread implementation of Continuous Descent Approach (CDA) would result in significant reductions in environmental impact and airline operating costs, however, a significant barrier to system wide CDA implementation is the difficulty to merge and space flights so that the CDA is flown safely. The en route metering essentially allows flights to absorb any necessary arrival delays en route, with transition to the terminal area in a pre-planned sequence. When delays would be imposed, the priority of landing would be based on the calculated time of arrival for each flight at the last metering fix, using a First-Come-First-Served policy. The spacing between successive arriving flights needs to be sufficient to allow for other flights downstream to merge into the overall flow while maintaining the minimum required separation according to the applicable rules. This work describes the fundamental design of a decision-support tool and procedures for CDA in the Sao Paulo Terminal Radar Approach Control (SP-TRACON) with flight spacing based on Required Time of Arrival (RTA) at a metering fix. A linear programming model was used to establish required time of arrival at TRACON entry points to provide adequate separation on final approach following the Standard Terminal Arrival Routes (STARs). For this purpose, typical actual traffic data approaching to airports in the SP-TRACON were used to apply the sequence model and evaluate the potential benefits on throughput and delays for Sao Paulo - Guarulhos airport. Using the ATFM methodology developed in this work, the general delays applied to the traffics of the two selected days were 53.5% and 55.1% lower than the delays observed with ATFM measures used by air traffic controllers. For the peak hours considered, the methodology provided 25.5% and 30.1% delay reduction. The air traffic controllers role in the process and workload reduction is also discussed.
description Guiding arriving flights through congested terminal airspace has always been a challenge. As traffic builds up, controllers must often move traffic away from the airport until they can bring those flights in for landing, causing inefficiencies. A widespread implementation of Continuous Descent Approach (CDA) would result in significant reductions in environmental impact and airline operating costs, however, a significant barrier to system wide CDA implementation is the difficulty to merge and space flights so that the CDA is flown safely. The en route metering essentially allows flights to absorb any necessary arrival delays en route, with transition to the terminal area in a pre-planned sequence. When delays would be imposed, the priority of landing would be based on the calculated time of arrival for each flight at the last metering fix, using a First-Come-First-Served policy. The spacing between successive arriving flights needs to be sufficient to allow for other flights downstream to merge into the overall flow while maintaining the minimum required separation according to the applicable rules. This work describes the fundamental design of a decision-support tool and procedures for CDA in the Sao Paulo Terminal Radar Approach Control (SP-TRACON) with flight spacing based on Required Time of Arrival (RTA) at a metering fix. A linear programming model was used to establish required time of arrival at TRACON entry points to provide adequate separation on final approach following the Standard Terminal Arrival Routes (STARs). For this purpose, typical actual traffic data approaching to airports in the SP-TRACON were used to apply the sequence model and evaluate the potential benefits on throughput and delays for Sao Paulo - Guarulhos airport. Using the ATFM methodology developed in this work, the general delays applied to the traffics of the two selected days were 53.5% and 55.1% lower than the delays observed with ATFM measures used by air traffic controllers. For the peak hours considered, the methodology provided 25.5% and 30.1% delay reduction. The air traffic controllers role in the process and workload reduction is also discussed.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1087
url http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1087
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
publisher.none.fl_str_mv Instituto Tecnológico de Aeronáutica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do ITA
instname:Instituto Tecnológico de Aeronáutica
instacron:ITA
reponame_str Biblioteca Digital de Teses e Dissertações do ITA
collection Biblioteca Digital de Teses e Dissertações do ITA
instname_str Instituto Tecnológico de Aeronáutica
instacron_str ITA
institution ITA
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do ITA - Instituto Tecnológico de Aeronáutica
repository.mail.fl_str_mv
subject_por_txtF_mv Controle de aproximação
Controle de tráfego aéreo
Sistemas de apoio à decisão
Capacidade do sistema de guiamento
Transportes
_version_ 1706809266244943872