Control and filtering for continuous-time Markov jump linear systems with partial mode information

Detalhes bibliográficos
Autor(a) principal: Rodrigues , Caio César Graciani
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do LNCC
Texto Completo: https://tede.lncc.br/handle/tede/267
Resumo: Over the past few decades, the study of systems subjected to abrupt changes in their structures has consolidated as a significant area of research, due, in part, to the increasing importance of dealing with the occurrence of random failures in complex systems. In this context, Markov jump linear system (MJLS) comes up as an approach of central interest, as a means of representing these dynamics. Among the numerous works that seek to establish design methods for control and filtering considering this class of systems, the scarcity of literature related to the partial observation scenarios is noticeable. This thesis features contributions to the H1 control and filtering for continuous-time MJLS with partial mode information. In order to overcome the challenge regarding the lack of information of the current state of the Markov chain, we use a detector-based formulation. In this formulation, we assume the existence of a detector, available at all times, which provides partial information about the operating mode of the jump process. A favorable feature of this strategy is that it allows us to recover (without being limited to) some recent results of partial information scenarios in which we have an explicit solution, such as the cases of complete information, mode-independent and cluster observations. Our results comprise a new bounded real lemma followed by the design of controllers and filters driven only by the informations given by the detector. Both, the H1 analysis and the design methods presented are established through the solutions of linear matrix inequalities. In addition, numerical simulations are also presented encompassing the H1 performance for particular structures of the detector process. From an application point of view, we highlight some examples related to the linearized dynamics for an unmanned aerial vehicle.
id LNCC_80690edb17a408b27c7c152afb9477e9
oai_identifier_str oai:tede-server.lncc.br:tede/267
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Todorov, Marcos Garciahttp://lattes.cnpq.br/1391205251405727Fragoso , Marcelo Dutrahttp://lattes.cnpq.br/9037349417947599Todorov, Marcos GarciaBaczynski, Jackhttp://lattes.cnpq.br/2332051647489024Val, João Bosco Ribeiro doTerra, Marco Henriquehttp://lattes.cnpq.br/2938728391656955Rodrigues , Caio César Graciani2017-08-10T18:46:07Z2017-04-10RODRIGUES, C. C. G. Control and filtering for continuous-time Markov jump linear systems with partial mode information, 2017, 86 f. Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2017.https://tede.lncc.br/handle/tede/267Over the past few decades, the study of systems subjected to abrupt changes in their structures has consolidated as a significant area of research, due, in part, to the increasing importance of dealing with the occurrence of random failures in complex systems. In this context, Markov jump linear system (MJLS) comes up as an approach of central interest, as a means of representing these dynamics. Among the numerous works that seek to establish design methods for control and filtering considering this class of systems, the scarcity of literature related to the partial observation scenarios is noticeable. This thesis features contributions to the H1 control and filtering for continuous-time MJLS with partial mode information. In order to overcome the challenge regarding the lack of information of the current state of the Markov chain, we use a detector-based formulation. In this formulation, we assume the existence of a detector, available at all times, which provides partial information about the operating mode of the jump process. A favorable feature of this strategy is that it allows us to recover (without being limited to) some recent results of partial information scenarios in which we have an explicit solution, such as the cases of complete information, mode-independent and cluster observations. Our results comprise a new bounded real lemma followed by the design of controllers and filters driven only by the informations given by the detector. Both, the H1 analysis and the design methods presented are established through the solutions of linear matrix inequalities. In addition, numerical simulations are also presented encompassing the H1 performance for particular structures of the detector process. From an application point of view, we highlight some examples related to the linearized dynamics for an unmanned aerial vehicle.Nas últimas décadas, o estudo de sistemas cujas estruturas estão sujeitas a mudanças abruptas de comportamento tem se consolidado como uma significante área de pesquisa, devido, em parte, pela importância crescente de lidar com a ocorrência de falhas aleatórias em sistemas complexos. Neste contexto, os sistemas lineares com salto Markoviano (SLSM) surgem como uma abordagem de interesse central, como um meio de representar estas dinâmicas. Dentre os inúmeros trabalhos que buscam estabelecer técnicas de controle e filtragem considerando esta classe de sistemas, a escassez de literatura relacionada ao cenário de observações parciais é perceptível. Esta tese apresenta novos resultados de controle e filtragem H1 para SLSM a tempo contínuo e observações parciais no modo de operação. A fim de superar o desafio quanto a falta de informações do atual estado da cadeia de Markov, utilizamos uma formulação baseada em um detector. Com esta abordagem, assumimos a existência de um detector, disponível em todo instante de tempo, que fornece informações a respeito do modo de operação do processo de salto. Uma favorável característica desta estratégia é a de nos possibilitar o resgate (sem estar-se limitado a eles) de alguns resultados recentes dos cenários de informações parciais nos quais temos uma solução explícita, como os casos de informações completas, independentes do modo e cluster de observações. Os nossos resultados compreendem um novo bounded real lemma seguido do projeto de controladores e filtros que usam apenas as informações do detector. Tanto a análise H1 quanto os métodos de projeto apresentados são estabelecidos através da soluções de inequações matriciais lineares. Adicionalmente, também são apresentadas simulações numéricas que mostram a performance H1 para estruturas particulares do detector. Sob o ponto de vista de aplicações, destacamos os exemplos relacionados a dinâmicas linearizadas para um avião aéreo não tripulado.Submitted by Maria Cristina (library@lncc.br) on 2017-08-10T18:45:47Z No. of bitstreams: 1 tese_caio_cesar_graciani_rodrigues.pdf: 1550607 bytes, checksum: 740cf1e87f2a897b734accc7abd6ec11 (MD5)Approved for entry into archive by Maria Cristina (library@lncc.br) on 2017-08-10T18:45:57Z (GMT) No. of bitstreams: 1 tese_caio_cesar_graciani_rodrigues.pdf: 1550607 bytes, checksum: 740cf1e87f2a897b734accc7abd6ec11 (MD5)Made available in DSpace on 2017-08-10T18:46:07Z (GMT). No. of bitstreams: 1 tese_caio_cesar_graciani_rodrigues.pdf: 1550607 bytes, checksum: 740cf1e87f2a897b734accc7abd6ec11 (MD5) Previous issue date: 2017-04-10Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)application/pdfhttp://tede-server.lncc.br:8080/retrieve/869/tese_caio_cesar_graciani_rodrigues.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBrasilCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)Processos estocásticosControle H-infinitoFiltragem H-infinitoStochastic processCNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAISControl and filtering for continuous-time Markov jump linear systems with partial mode informationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede-server.lncc.br:8080/tede/bitstream/tede/267/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALtese_caio_cesar_graciani_rodrigues.pdftese_caio_cesar_graciani_rodrigues.pdfapplication/pdf1550607http://tede-server.lncc.br:8080/tede/bitstream/tede/267/2/tese_caio_cesar_graciani_rodrigues.pdf740cf1e87f2a897b734accc7abd6ec11MD52THUMBNAILtese_caio_cesar_graciani_rodrigues.pdf.jpgtese_caio_cesar_graciani_rodrigues.pdf.jpgimage/jpeg3546http://tede-server.lncc.br:8080/tede/bitstream/tede/267/3/tese_caio_cesar_graciani_rodrigues.pdf.jpgf534a6fe7558fb1d847d8ed1cfdc03ebMD53tede/2672023-06-02 09:28:23.816oai:tede-server.lncc.br:tede/267Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-06-02T12:28:23Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.por.fl_str_mv Control and filtering for continuous-time Markov jump linear systems with partial mode information
title Control and filtering for continuous-time Markov jump linear systems with partial mode information
spellingShingle Control and filtering for continuous-time Markov jump linear systems with partial mode information
Rodrigues , Caio César Graciani
Processos estocásticos
Controle H-infinito
Filtragem H-infinito
Stochastic process
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAIS
title_short Control and filtering for continuous-time Markov jump linear systems with partial mode information
title_full Control and filtering for continuous-time Markov jump linear systems with partial mode information
title_fullStr Control and filtering for continuous-time Markov jump linear systems with partial mode information
title_full_unstemmed Control and filtering for continuous-time Markov jump linear systems with partial mode information
title_sort Control and filtering for continuous-time Markov jump linear systems with partial mode information
author Rodrigues , Caio César Graciani
author_facet Rodrigues , Caio César Graciani
author_role author
dc.contributor.advisor1.fl_str_mv Todorov, Marcos Garcia
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1391205251405727
dc.contributor.advisor-co1.fl_str_mv Fragoso , Marcelo Dutra
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9037349417947599
dc.contributor.referee1.fl_str_mv Todorov, Marcos Garcia
dc.contributor.referee2.fl_str_mv Baczynski, Jack
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2332051647489024
dc.contributor.referee3.fl_str_mv Val, João Bosco Ribeiro do
dc.contributor.referee4.fl_str_mv Terra, Marco Henrique
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2938728391656955
dc.contributor.author.fl_str_mv Rodrigues , Caio César Graciani
contributor_str_mv Todorov, Marcos Garcia
Fragoso , Marcelo Dutra
Todorov, Marcos Garcia
Baczynski, Jack
Val, João Bosco Ribeiro do
Terra, Marco Henrique
dc.subject.por.fl_str_mv Processos estocásticos
Controle H-infinito
Filtragem H-infinito
Stochastic process
topic Processos estocásticos
Controle H-infinito
Filtragem H-infinito
Stochastic process
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAIS
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAIS
description Over the past few decades, the study of systems subjected to abrupt changes in their structures has consolidated as a significant area of research, due, in part, to the increasing importance of dealing with the occurrence of random failures in complex systems. In this context, Markov jump linear system (MJLS) comes up as an approach of central interest, as a means of representing these dynamics. Among the numerous works that seek to establish design methods for control and filtering considering this class of systems, the scarcity of literature related to the partial observation scenarios is noticeable. This thesis features contributions to the H1 control and filtering for continuous-time MJLS with partial mode information. In order to overcome the challenge regarding the lack of information of the current state of the Markov chain, we use a detector-based formulation. In this formulation, we assume the existence of a detector, available at all times, which provides partial information about the operating mode of the jump process. A favorable feature of this strategy is that it allows us to recover (without being limited to) some recent results of partial information scenarios in which we have an explicit solution, such as the cases of complete information, mode-independent and cluster observations. Our results comprise a new bounded real lemma followed by the design of controllers and filters driven only by the informations given by the detector. Both, the H1 analysis and the design methods presented are established through the solutions of linear matrix inequalities. In addition, numerical simulations are also presented encompassing the H1 performance for particular structures of the detector process. From an application point of view, we highlight some examples related to the linearized dynamics for an unmanned aerial vehicle.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-08-10T18:46:07Z
dc.date.issued.fl_str_mv 2017-04-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, C. C. G. Control and filtering for continuous-time Markov jump linear systems with partial mode information, 2017, 86 f. Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2017.
dc.identifier.uri.fl_str_mv https://tede.lncc.br/handle/tede/267
identifier_str_mv RODRIGUES, C. C. G. Control and filtering for continuous-time Markov jump linear systems with partial mode information, 2017, 86 f. Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2017.
url https://tede.lncc.br/handle/tede/267
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Modelagem Computacional
dc.publisher.initials.fl_str_mv LNCC
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
bitstream.url.fl_str_mv http://tede-server.lncc.br:8080/tede/bitstream/tede/267/1/license.txt
http://tede-server.lncc.br:8080/tede/bitstream/tede/267/2/tese_caio_cesar_graciani_rodrigues.pdf
http://tede-server.lncc.br:8080/tede/bitstream/tede/267/3/tese_caio_cesar_graciani_rodrigues.pdf.jpg
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
740cf1e87f2a897b734accc7abd6ec11
f534a6fe7558fb1d847d8ed1cfdc03eb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1797683219032702976