Control and filtering for continuous-time Markov jump linear systems with partial mode information
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do LNCC |
Texto Completo: | https://tede.lncc.br/handle/tede/267 |
Resumo: | Over the past few decades, the study of systems subjected to abrupt changes in their structures has consolidated as a significant area of research, due, in part, to the increasing importance of dealing with the occurrence of random failures in complex systems. In this context, Markov jump linear system (MJLS) comes up as an approach of central interest, as a means of representing these dynamics. Among the numerous works that seek to establish design methods for control and filtering considering this class of systems, the scarcity of literature related to the partial observation scenarios is noticeable. This thesis features contributions to the H1 control and filtering for continuous-time MJLS with partial mode information. In order to overcome the challenge regarding the lack of information of the current state of the Markov chain, we use a detector-based formulation. In this formulation, we assume the existence of a detector, available at all times, which provides partial information about the operating mode of the jump process. A favorable feature of this strategy is that it allows us to recover (without being limited to) some recent results of partial information scenarios in which we have an explicit solution, such as the cases of complete information, mode-independent and cluster observations. Our results comprise a new bounded real lemma followed by the design of controllers and filters driven only by the informations given by the detector. Both, the H1 analysis and the design methods presented are established through the solutions of linear matrix inequalities. In addition, numerical simulations are also presented encompassing the H1 performance for particular structures of the detector process. From an application point of view, we highlight some examples related to the linearized dynamics for an unmanned aerial vehicle. |
id |
LNCC_80690edb17a408b27c7c152afb9477e9 |
---|---|
oai_identifier_str |
oai:tede-server.lncc.br:tede/267 |
network_acronym_str |
LNCC |
network_name_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
repository_id_str |
|
spelling |
Todorov, Marcos Garciahttp://lattes.cnpq.br/1391205251405727Fragoso , Marcelo Dutrahttp://lattes.cnpq.br/9037349417947599Todorov, Marcos GarciaBaczynski, Jackhttp://lattes.cnpq.br/2332051647489024Val, João Bosco Ribeiro doTerra, Marco Henriquehttp://lattes.cnpq.br/2938728391656955Rodrigues , Caio César Graciani2017-08-10T18:46:07Z2017-04-10RODRIGUES, C. C. G. Control and filtering for continuous-time Markov jump linear systems with partial mode information, 2017, 86 f. Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2017.https://tede.lncc.br/handle/tede/267Over the past few decades, the study of systems subjected to abrupt changes in their structures has consolidated as a significant area of research, due, in part, to the increasing importance of dealing with the occurrence of random failures in complex systems. In this context, Markov jump linear system (MJLS) comes up as an approach of central interest, as a means of representing these dynamics. Among the numerous works that seek to establish design methods for control and filtering considering this class of systems, the scarcity of literature related to the partial observation scenarios is noticeable. This thesis features contributions to the H1 control and filtering for continuous-time MJLS with partial mode information. In order to overcome the challenge regarding the lack of information of the current state of the Markov chain, we use a detector-based formulation. In this formulation, we assume the existence of a detector, available at all times, which provides partial information about the operating mode of the jump process. A favorable feature of this strategy is that it allows us to recover (without being limited to) some recent results of partial information scenarios in which we have an explicit solution, such as the cases of complete information, mode-independent and cluster observations. Our results comprise a new bounded real lemma followed by the design of controllers and filters driven only by the informations given by the detector. Both, the H1 analysis and the design methods presented are established through the solutions of linear matrix inequalities. In addition, numerical simulations are also presented encompassing the H1 performance for particular structures of the detector process. From an application point of view, we highlight some examples related to the linearized dynamics for an unmanned aerial vehicle.Nas últimas décadas, o estudo de sistemas cujas estruturas estão sujeitas a mudanças abruptas de comportamento tem se consolidado como uma significante área de pesquisa, devido, em parte, pela importância crescente de lidar com a ocorrência de falhas aleatórias em sistemas complexos. Neste contexto, os sistemas lineares com salto Markoviano (SLSM) surgem como uma abordagem de interesse central, como um meio de representar estas dinâmicas. Dentre os inúmeros trabalhos que buscam estabelecer técnicas de controle e filtragem considerando esta classe de sistemas, a escassez de literatura relacionada ao cenário de observações parciais é perceptível. Esta tese apresenta novos resultados de controle e filtragem H1 para SLSM a tempo contínuo e observações parciais no modo de operação. A fim de superar o desafio quanto a falta de informações do atual estado da cadeia de Markov, utilizamos uma formulação baseada em um detector. Com esta abordagem, assumimos a existência de um detector, disponível em todo instante de tempo, que fornece informações a respeito do modo de operação do processo de salto. Uma favorável característica desta estratégia é a de nos possibilitar o resgate (sem estar-se limitado a eles) de alguns resultados recentes dos cenários de informações parciais nos quais temos uma solução explícita, como os casos de informações completas, independentes do modo e cluster de observações. Os nossos resultados compreendem um novo bounded real lemma seguido do projeto de controladores e filtros que usam apenas as informações do detector. Tanto a análise H1 quanto os métodos de projeto apresentados são estabelecidos através da soluções de inequações matriciais lineares. Adicionalmente, também são apresentadas simulações numéricas que mostram a performance H1 para estruturas particulares do detector. Sob o ponto de vista de aplicações, destacamos os exemplos relacionados a dinâmicas linearizadas para um avião aéreo não tripulado.Submitted by Maria Cristina (library@lncc.br) on 2017-08-10T18:45:47Z No. of bitstreams: 1 tese_caio_cesar_graciani_rodrigues.pdf: 1550607 bytes, checksum: 740cf1e87f2a897b734accc7abd6ec11 (MD5)Approved for entry into archive by Maria Cristina (library@lncc.br) on 2017-08-10T18:45:57Z (GMT) No. of bitstreams: 1 tese_caio_cesar_graciani_rodrigues.pdf: 1550607 bytes, checksum: 740cf1e87f2a897b734accc7abd6ec11 (MD5)Made available in DSpace on 2017-08-10T18:46:07Z (GMT). No. of bitstreams: 1 tese_caio_cesar_graciani_rodrigues.pdf: 1550607 bytes, checksum: 740cf1e87f2a897b734accc7abd6ec11 (MD5) Previous issue date: 2017-04-10Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)application/pdfhttp://tede-server.lncc.br:8080/retrieve/869/tese_caio_cesar_graciani_rodrigues.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBrasilCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)Processos estocásticosControle H-infinitoFiltragem H-infinitoStochastic processCNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAISControl and filtering for continuous-time Markov jump linear systems with partial mode informationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede-server.lncc.br:8080/tede/bitstream/tede/267/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALtese_caio_cesar_graciani_rodrigues.pdftese_caio_cesar_graciani_rodrigues.pdfapplication/pdf1550607http://tede-server.lncc.br:8080/tede/bitstream/tede/267/2/tese_caio_cesar_graciani_rodrigues.pdf740cf1e87f2a897b734accc7abd6ec11MD52THUMBNAILtese_caio_cesar_graciani_rodrigues.pdf.jpgtese_caio_cesar_graciani_rodrigues.pdf.jpgimage/jpeg3546http://tede-server.lncc.br:8080/tede/bitstream/tede/267/3/tese_caio_cesar_graciani_rodrigues.pdf.jpgf534a6fe7558fb1d847d8ed1cfdc03ebMD53tede/2672023-06-02 09:28:23.816oai:tede-server.lncc.br:tede/267Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-06-02T12:28:23Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false |
dc.title.por.fl_str_mv |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
title |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
spellingShingle |
Control and filtering for continuous-time Markov jump linear systems with partial mode information Rodrigues , Caio César Graciani Processos estocásticos Controle H-infinito Filtragem H-infinito Stochastic process CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAIS |
title_short |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
title_full |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
title_fullStr |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
title_full_unstemmed |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
title_sort |
Control and filtering for continuous-time Markov jump linear systems with partial mode information |
author |
Rodrigues , Caio César Graciani |
author_facet |
Rodrigues , Caio César Graciani |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Todorov, Marcos Garcia |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1391205251405727 |
dc.contributor.advisor-co1.fl_str_mv |
Fragoso , Marcelo Dutra |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9037349417947599 |
dc.contributor.referee1.fl_str_mv |
Todorov, Marcos Garcia |
dc.contributor.referee2.fl_str_mv |
Baczynski, Jack |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2332051647489024 |
dc.contributor.referee3.fl_str_mv |
Val, João Bosco Ribeiro do |
dc.contributor.referee4.fl_str_mv |
Terra, Marco Henrique |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2938728391656955 |
dc.contributor.author.fl_str_mv |
Rodrigues , Caio César Graciani |
contributor_str_mv |
Todorov, Marcos Garcia Fragoso , Marcelo Dutra Todorov, Marcos Garcia Baczynski, Jack Val, João Bosco Ribeiro do Terra, Marco Henrique |
dc.subject.por.fl_str_mv |
Processos estocásticos Controle H-infinito Filtragem H-infinito Stochastic process |
topic |
Processos estocásticos Controle H-infinito Filtragem H-infinito Stochastic process CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAIS |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::PROBABILIDADE::PROCESSOS ESTOCASTICOS ESPECIAIS |
description |
Over the past few decades, the study of systems subjected to abrupt changes in their structures has consolidated as a significant area of research, due, in part, to the increasing importance of dealing with the occurrence of random failures in complex systems. In this context, Markov jump linear system (MJLS) comes up as an approach of central interest, as a means of representing these dynamics. Among the numerous works that seek to establish design methods for control and filtering considering this class of systems, the scarcity of literature related to the partial observation scenarios is noticeable. This thesis features contributions to the H1 control and filtering for continuous-time MJLS with partial mode information. In order to overcome the challenge regarding the lack of information of the current state of the Markov chain, we use a detector-based formulation. In this formulation, we assume the existence of a detector, available at all times, which provides partial information about the operating mode of the jump process. A favorable feature of this strategy is that it allows us to recover (without being limited to) some recent results of partial information scenarios in which we have an explicit solution, such as the cases of complete information, mode-independent and cluster observations. Our results comprise a new bounded real lemma followed by the design of controllers and filters driven only by the informations given by the detector. Both, the H1 analysis and the design methods presented are established through the solutions of linear matrix inequalities. In addition, numerical simulations are also presented encompassing the H1 performance for particular structures of the detector process. From an application point of view, we highlight some examples related to the linearized dynamics for an unmanned aerial vehicle. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-08-10T18:46:07Z |
dc.date.issued.fl_str_mv |
2017-04-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODRIGUES, C. C. G. Control and filtering for continuous-time Markov jump linear systems with partial mode information, 2017, 86 f. Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2017. |
dc.identifier.uri.fl_str_mv |
https://tede.lncc.br/handle/tede/267 |
identifier_str_mv |
RODRIGUES, C. C. G. Control and filtering for continuous-time Markov jump linear systems with partial mode information, 2017, 86 f. Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2017. |
url |
https://tede.lncc.br/handle/tede/267 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
LNCC |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) |
publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do LNCC instname:Laboratório Nacional de Computação Científica (LNCC) instacron:LNCC |
instname_str |
Laboratório Nacional de Computação Científica (LNCC) |
instacron_str |
LNCC |
institution |
LNCC |
reponame_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
collection |
Biblioteca Digital de Teses e Dissertações do LNCC |
bitstream.url.fl_str_mv |
http://tede-server.lncc.br:8080/tede/bitstream/tede/267/1/license.txt http://tede-server.lncc.br:8080/tede/bitstream/tede/267/2/tese_caio_cesar_graciani_rodrigues.pdf http://tede-server.lncc.br:8080/tede/bitstream/tede/267/3/tese_caio_cesar_graciani_rodrigues.pdf.jpg |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 740cf1e87f2a897b734accc7abd6ec11 f534a6fe7558fb1d847d8ed1cfdc03eb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC) |
repository.mail.fl_str_mv |
library@lncc.br||library@lncc.br |
_version_ |
1797683219032702976 |