Análise de sensibilidade topológica na mecânica do dano e da fratura
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do LNCC |
Texto Completo: | https://tede.lncc.br/handle/tede/275 |
Resumo: | The topological derivative is a scalar field that measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-terms or even cracks. In this work, the concept of topological derivative is applied in the context of damage and fracture mechanics. In particular, the nucleation and propagation damaging process and the crack growth control in cracked elastic bodies are studied. In the first topic, the topological derivative is applied together with the Griffith-Francfort-Marigo damage model to propose a simple numerical scheme in order to determine the damage nucleation/propagation in brittle materials. The proposed numerical scheme is able to capture the whole nucleation and propagation damaging process, including important features like kinking and bifurcations. These properties are confirmed through several numerical experiments and by comparison with available laboratory experiments. Taking into account the promising obtained results, a simple adaptation of the Griffith-Francfort-Marigo damage model to the context of hydraulic fracture is proposed. The new model can be seen as a simplified version with respect to the real hydraulic fracture. In this sense, this second study aims to develop a simple numerical scheme which can be applied in more realistic situations later. However, important features associated with hydraulic fracture process are captured with the simplified model. In the sequence, in order to study the hydraulic fracture process in more realistic scenarios, the whole developed methodology is applied together with the Biot hydro-mechanical model. Finally, the topological derivative associated with the Griffith-Francfort-Marigo damage model extended to the context of hydraulic fracture in the three spatial dimensional case is obtained. In the second topic, the concept of topological derivative is applied to the crack growth control problem. In particular, a methodology aiming to extend the remaining useful life of cracked elastic bodies is proposed. The central idea consists in minimize a shape functional based on the famous Rice’s integral with respect to the nucleation of hard and/or soft inclusions far from the crack tip. According to the Griffith energy criterion, this simple procedure allows for increasing the remaining useful life of the cracked body. Finally, in order to show the applicability of the proposed methodology, some numerical experiments are presented. |
id |
LNCC_ab58cd7e455a25da08c2bc87c236496e |
---|---|
oai_identifier_str |
oai:tede-server.lncc.br:tede/275 |
network_acronym_str |
LNCC |
network_name_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
repository_id_str |
|
spelling |
Novotny, Antonio Andréhttp://lattes.cnpq.br/8102993969523532GoethemGoethem, NicolasSokolowski, JanNovotny, Antonio AndréLoula, Abimael Fernando Dourado http://lattes.cnpq.br/7315592936477868Murad , Márcio Arabhttp://lattes.cnpq.br/1392335366884977Fancello, Eduardo Albertohttp://lattes.cnpq.br/2615852310948790Xavier, Marcel Duarte da Silva2018-06-21T13:24:44Z2018-04-20XAVIER, M. D. S. Análise de sensibilidade topológica na mecânica do dano e da fratura, 2018, xii,159 f., Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2018.https://tede.lncc.br/handle/tede/275The topological derivative is a scalar field that measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-terms or even cracks. In this work, the concept of topological derivative is applied in the context of damage and fracture mechanics. In particular, the nucleation and propagation damaging process and the crack growth control in cracked elastic bodies are studied. In the first topic, the topological derivative is applied together with the Griffith-Francfort-Marigo damage model to propose a simple numerical scheme in order to determine the damage nucleation/propagation in brittle materials. The proposed numerical scheme is able to capture the whole nucleation and propagation damaging process, including important features like kinking and bifurcations. These properties are confirmed through several numerical experiments and by comparison with available laboratory experiments. Taking into account the promising obtained results, a simple adaptation of the Griffith-Francfort-Marigo damage model to the context of hydraulic fracture is proposed. The new model can be seen as a simplified version with respect to the real hydraulic fracture. In this sense, this second study aims to develop a simple numerical scheme which can be applied in more realistic situations later. However, important features associated with hydraulic fracture process are captured with the simplified model. In the sequence, in order to study the hydraulic fracture process in more realistic scenarios, the whole developed methodology is applied together with the Biot hydro-mechanical model. Finally, the topological derivative associated with the Griffith-Francfort-Marigo damage model extended to the context of hydraulic fracture in the three spatial dimensional case is obtained. In the second topic, the concept of topological derivative is applied to the crack growth control problem. In particular, a methodology aiming to extend the remaining useful life of cracked elastic bodies is proposed. The central idea consists in minimize a shape functional based on the famous Rice’s integral with respect to the nucleation of hard and/or soft inclusions far from the crack tip. According to the Griffith energy criterion, this simple procedure allows for increasing the remaining useful life of the cracked body. Finally, in order to show the applicability of the proposed methodology, some numerical experiments are presented.A derivada topológica é um campo escalar que mede, em cada ponto do domínio de análise, a sensibilidade de um dado funcional de forma em relação a uma perturbação singular infinitesimal no domínio, tal como a inserção de furos, inclusões, termos fonte ou trincas. Neste trabalho, o conceito de derivada topológica é aplicado no contexto da mecânica do dano e da fratura. Em particular, são objetos de estudos a modelagem dos processos de nucleação e evolução de dano e o controle do crescimento de fraturas em corpos elásticos danificados. No primeiro tópico, a derivada topológica é inicialmente utilizada em conjunto com o modelo de dano de Griffith-Francfort-Marigo onde um esquema numérico simples e flexível para determinar a nucleação e a evolução de dano em materiais frágeis é proposto. O esquema numérico desenvolvido é capaz de capturar todo o processo de nucleação e propagação de danos, incluindo características importantes como desvios e bifurcações. Estas propriedades são confirmadas através da realização de vários experimentos numéricos e em comparação com resultados de laboratório disponíveis na literatura. Tendo em conta os bons resultados obtidos, uma extensão do modelo de Griffith-Francfort-Marigo para o contexto de fraturamento hidráulico é então proposta. O novo modelo trata-se de uma versão bastante simplificada em relação ao fraturamento hidráulico real. Neste sentido, o objetivo deste segundo estudo é o desenvolvimento de uma metodologia simples e flexível que possa ser aplicada depois em situações mais realísticas. No entanto, experimentos numéricos realizados mostram que, mesmo com a introdução de simplificações drásticas, fenômenos de grande importância associados ao processo de fraturamento hidráulico são capturados. Na sequencia, o ferramental desenvolvido é então utilizado em conjunto com o modelo hidromecânico de Biot a fim de estudar cenários mais realísticos. Finalmente, seguindo o caminho natural desta pesquisa, é então calculada a derivada topológica associada ao modelo de Griffith-Francfort-Marigo estendido para o contexto de fraturamento hidráulico em três dimensões espaciais. No segundo tópico, o conceito de derivada topológica é utilizado para analisar o controle do crescimento de fraturas. Em particular, é proposta uma metodologia que visa ampliar a vida útil remanescente de corpos elásticos parcialmente danificados. A ideia central consiste em minimizar um funcional de forma baseado na famosa integral de Rice com respeito a nucleação de inclusões rígidas e/ou complacentes longe da ponta da fratura. De acordo com o critério de Griffith, este simples procedimento permite um aumento da vida útil remanescente dos corpos danificados. A fim de ilustrar a aplicabilidade da metodologia proposta alguns experimentos numéricos são apresentados.Submitted by Maria Cristina (library@lncc.br) on 2018-06-21T13:24:04Z No. of bitstreams: 1 tese Marcel Duarte.pdf: 2095388 bytes, checksum: 09fc1bc9c7c471b83088df9744b4614a (MD5)Approved for entry into archive by Maria Cristina (library@lncc.br) on 2018-06-21T13:24:26Z (GMT) No. of bitstreams: 1 tese Marcel Duarte.pdf: 2095388 bytes, checksum: 09fc1bc9c7c471b83088df9744b4614a (MD5)Made available in DSpace on 2018-06-21T13:24:44Z (GMT). No. of bitstreams: 1 tese Marcel Duarte.pdf: 2095388 bytes, checksum: 09fc1bc9c7c471b83088df9744b4614a (MD5) Previous issue date: 2018-04-20Agência Nacional de Pesquisaapplication/pdfhttp://tede-server.lncc.br:8080/retrieve/912/tese%20Marcel%20Duarte.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBrasilCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)Equações diferenciais parciasMecãnica do dano e da fraturaAnálise de sensibilidadePartial differential equationsSensitivity analysisCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAISAnálise de sensibilidade topológica na mecânica do dano e da fraturaTopological sensitivity analysis in damage and fracture mechanicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede-server.lncc.br:8080/tede/bitstream/tede/275/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALtese Marcel Duarte.pdftese Marcel Duarte.pdfapplication/pdf2095388http://tede-server.lncc.br:8080/tede/bitstream/tede/275/2/tese+Marcel+Duarte.pdf09fc1bc9c7c471b83088df9744b4614aMD52THUMBNAILtese Marcel Duarte.pdf.jpgtese Marcel Duarte.pdf.jpgimage/jpeg3161http://tede-server.lncc.br:8080/tede/bitstream/tede/275/3/tese+Marcel+Duarte.pdf.jpg3480abaa45edbd65248475b89afd414fMD53tede/2752023-06-02 09:49:17.412oai:tede-server.lncc.br:tede/275Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-06-02T12:49:17Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false |
dc.title.por.fl_str_mv |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
dc.title.alternative.eng.fl_str_mv |
Topological sensitivity analysis in damage and fracture mechanics |
title |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
spellingShingle |
Análise de sensibilidade topológica na mecânica do dano e da fratura Xavier, Marcel Duarte da Silva Equações diferenciais parcias Mecãnica do dano e da fratura Análise de sensibilidade Partial differential equations Sensitivity analysis CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
title_short |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
title_full |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
title_fullStr |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
title_full_unstemmed |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
title_sort |
Análise de sensibilidade topológica na mecânica do dano e da fratura |
author |
Xavier, Marcel Duarte da Silva |
author_facet |
Xavier, Marcel Duarte da Silva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Novotny, Antonio André |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8102993969523532Goethem |
dc.contributor.advisor-co1.fl_str_mv |
Goethem, Nicolas |
dc.contributor.advisor-co2.fl_str_mv |
Sokolowski, Jan |
dc.contributor.referee1.fl_str_mv |
Novotny, Antonio André |
dc.contributor.referee2.fl_str_mv |
Loula, Abimael Fernando Dourado |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/7315592936477868 |
dc.contributor.referee3.fl_str_mv |
Murad , Márcio Arab |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/1392335366884977 |
dc.contributor.referee4.fl_str_mv |
Fancello, Eduardo Alberto |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2615852310948790 |
dc.contributor.author.fl_str_mv |
Xavier, Marcel Duarte da Silva |
contributor_str_mv |
Novotny, Antonio André Goethem, Nicolas Sokolowski, Jan Novotny, Antonio André Loula, Abimael Fernando Dourado Murad , Márcio Arab Fancello, Eduardo Alberto |
dc.subject.por.fl_str_mv |
Equações diferenciais parcias Mecãnica do dano e da fratura Análise de sensibilidade |
topic |
Equações diferenciais parcias Mecãnica do dano e da fratura Análise de sensibilidade Partial differential equations Sensitivity analysis CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
dc.subject.eng.fl_str_mv |
Partial differential equations Sensitivity analysis |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ANALISE::EQUACOES DIFERENCIAIS PARCIAIS |
description |
The topological derivative is a scalar field that measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-terms or even cracks. In this work, the concept of topological derivative is applied in the context of damage and fracture mechanics. In particular, the nucleation and propagation damaging process and the crack growth control in cracked elastic bodies are studied. In the first topic, the topological derivative is applied together with the Griffith-Francfort-Marigo damage model to propose a simple numerical scheme in order to determine the damage nucleation/propagation in brittle materials. The proposed numerical scheme is able to capture the whole nucleation and propagation damaging process, including important features like kinking and bifurcations. These properties are confirmed through several numerical experiments and by comparison with available laboratory experiments. Taking into account the promising obtained results, a simple adaptation of the Griffith-Francfort-Marigo damage model to the context of hydraulic fracture is proposed. The new model can be seen as a simplified version with respect to the real hydraulic fracture. In this sense, this second study aims to develop a simple numerical scheme which can be applied in more realistic situations later. However, important features associated with hydraulic fracture process are captured with the simplified model. In the sequence, in order to study the hydraulic fracture process in more realistic scenarios, the whole developed methodology is applied together with the Biot hydro-mechanical model. Finally, the topological derivative associated with the Griffith-Francfort-Marigo damage model extended to the context of hydraulic fracture in the three spatial dimensional case is obtained. In the second topic, the concept of topological derivative is applied to the crack growth control problem. In particular, a methodology aiming to extend the remaining useful life of cracked elastic bodies is proposed. The central idea consists in minimize a shape functional based on the famous Rice’s integral with respect to the nucleation of hard and/or soft inclusions far from the crack tip. According to the Griffith energy criterion, this simple procedure allows for increasing the remaining useful life of the cracked body. Finally, in order to show the applicability of the proposed methodology, some numerical experiments are presented. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-06-21T13:24:44Z |
dc.date.issued.fl_str_mv |
2018-04-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
XAVIER, M. D. S. Análise de sensibilidade topológica na mecânica do dano e da fratura, 2018, xii,159 f., Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2018. |
dc.identifier.uri.fl_str_mv |
https://tede.lncc.br/handle/tede/275 |
identifier_str_mv |
XAVIER, M. D. S. Análise de sensibilidade topológica na mecânica do dano e da fratura, 2018, xii,159 f., Tese (Doutorado), Programa de Pós-Graduação em Modelagem Computacional, Laboratório Nacional de Computação Científica, Petrópolis, 2018. |
url |
https://tede.lncc.br/handle/tede/275 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
LNCC |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) |
publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do LNCC instname:Laboratório Nacional de Computação Científica (LNCC) instacron:LNCC |
instname_str |
Laboratório Nacional de Computação Científica (LNCC) |
instacron_str |
LNCC |
institution |
LNCC |
reponame_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
collection |
Biblioteca Digital de Teses e Dissertações do LNCC |
bitstream.url.fl_str_mv |
http://tede-server.lncc.br:8080/tede/bitstream/tede/275/1/license.txt http://tede-server.lncc.br:8080/tede/bitstream/tede/275/2/tese+Marcel+Duarte.pdf http://tede-server.lncc.br:8080/tede/bitstream/tede/275/3/tese+Marcel+Duarte.pdf.jpg |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 09fc1bc9c7c471b83088df9744b4614a 3480abaa45edbd65248475b89afd414f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC) |
repository.mail.fl_str_mv |
library@lncc.br||library@lncc.br |
_version_ |
1797683219089326080 |