Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações do LNCC |
Texto Completo: | https://tede.lncc.br/handle/tede/292 |
Resumo: | The pathogen S. aureus is one of the Gram-positive bacterias of greater versatility in regards to the diversity of tissues it can infect and the variety of diseases it causes, both in hospitals and community. Apart from the enormous variability of virulence and the great capacity of dispersion on its multiresistant clones such as the BEC (Brazilian Epidemic Clone), the emergence of isolates resistant to different classes of antimicrobials such as the important phenotypes of MRSA (methicillin-resistant Staphylococcus aureus) and VRSA (Staphylococcus aureus resistant to vancomycin) represent a serious problem in public health. Therefore, the present study had as one of the main objectives to reconstruct a transcriptional regulatory network (TRN) for the isolate Bmb9393 of the pathogenic bacterium Staphylococcus aureus. In addition, identifying the regulatory mechanisms that act in the biofilm formation of the bacteria and how the same influences the metabolism through an integrated model. The biofilm is considered an important virulence factor in nosocomial infections, especially those involving adherence to invasive medical devices and host tissues, playing an important role in the persistence of chronic infections. The biofilm can be defined as a sessile microbial community in which cells adhere to a abiotic surface or to other cells and are found surrounded by a protective polymeric extracellular matrix. Growth in biofilm confers innumerable adaptive advantages over planktonic cells species that are dispersed outside this microenvironment, among them it is possible to highlight the decrease in the susceptibility to antibiotics and to the immune system of the host, making it hard to eradicate these infections (1). In this context, having built a TRN as well as a metabolic model on a genomic scale (GEM) for the Brazilian isolate Bmb9393 S. aureus (2). This isolate has an increased ability to produce biofilm and a way to study this phenomenon is through computational modeling with the use of tools that allow the integration of regulatory pathways associated with biofilm production with GEM. The integrative approach is innovative because it is the first that considers the impact of gene regulation in metabolic activity for the pathogen. In addition, it is a pioneer in reconstruction of the TRN for a member belonging to the multiresistant clone BEC responsible for infections in several brazilians hospitals and soon became one of the MRSA clones one of worldwide dispersion. The methodology can be divided into three parts, with the first is the reconstruction of the draft of the TRN of BMB9393 from information obtained on the network published in 2011 for S. aureus N315 (3) enriched with both data from regulons (consisting of a transcription factor - TFs and the set of all genes regulated by them) databases bacterial as RegPrecise and Prodoric, as by manually cured regulatory interactions and prediction of regulatory elements. Still in the first stage, regulons have been identified in which the expression of all target genes was altered in the biofilm condition when compared to the planktonic condition. Regulatory pathways have also been reconstruct for each of these regulons. The second step involved the construction of the metabolic model by applying the (FBA) that utilizes linear optimization to determine the distribution of steady-state reactions in a metabolic network through maximization of a cellular objective, which, in this case, was represented by growth capacity or biomass (4). Finally, the last part includes the integration of the metabolic model with different regulatory pathways of interest, in addition to a pathway associated with the use of lactose by the cell, that was used to validate the methodology employed. Therefore, we obtain a computational model that represents what happens in the organism in a more realistic way, where metabolism and regulation are highly integrated, resulting in more reliable simulations and predictions. It is important emphasize that the integrative approach described in this paper is unpublished for the pathogen S. aures and opens new possibilities in the study of the so complex biofilm phenomenon. The analysis of the regulons associated with the biofilm condition demonstrated a high prevalence of genes related to the central metabolism of the bacteria both on biosynthesis and on compounds degradation. Besides the high use of alternative carbon sources on restrictive conditions that the biofilm growth imposes on cells in the deepest layers, showing the great influence of the central metabolism in virulence and, above all, on the growth of biofilm. |
id |
LNCC_ed9befc1d7baff7dd6fff4369a63fffd |
---|---|
oai_identifier_str |
oai:tede-server.lncc.br:tede/292 |
network_acronym_str |
LNCC |
network_name_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
repository_id_str |
|
spelling |
Nicolás, Marisa FabianaSantos, Marcelo Trindade dosNicolás, Marisa FabianaFigueiredo, Agnes Marie SáGuedes, Luciane Prioli CiapinaMenezes, Marcio Argollo Ferreira deKritz, Maurício Vieirahttp://lattes.cnpq.br/8028103771845084Costa, Maiana de Oliveira Cerqueira e2023-02-23T17:30:28Z2018-11-28COSTA, M. O. C. Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393). 2018. 241 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2018.https://tede.lncc.br/handle/tede/292The pathogen S. aureus is one of the Gram-positive bacterias of greater versatility in regards to the diversity of tissues it can infect and the variety of diseases it causes, both in hospitals and community. Apart from the enormous variability of virulence and the great capacity of dispersion on its multiresistant clones such as the BEC (Brazilian Epidemic Clone), the emergence of isolates resistant to different classes of antimicrobials such as the important phenotypes of MRSA (methicillin-resistant Staphylococcus aureus) and VRSA (Staphylococcus aureus resistant to vancomycin) represent a serious problem in public health. Therefore, the present study had as one of the main objectives to reconstruct a transcriptional regulatory network (TRN) for the isolate Bmb9393 of the pathogenic bacterium Staphylococcus aureus. In addition, identifying the regulatory mechanisms that act in the biofilm formation of the bacteria and how the same influences the metabolism through an integrated model. The biofilm is considered an important virulence factor in nosocomial infections, especially those involving adherence to invasive medical devices and host tissues, playing an important role in the persistence of chronic infections. The biofilm can be defined as a sessile microbial community in which cells adhere to a abiotic surface or to other cells and are found surrounded by a protective polymeric extracellular matrix. Growth in biofilm confers innumerable adaptive advantages over planktonic cells species that are dispersed outside this microenvironment, among them it is possible to highlight the decrease in the susceptibility to antibiotics and to the immune system of the host, making it hard to eradicate these infections (1). In this context, having built a TRN as well as a metabolic model on a genomic scale (GEM) for the Brazilian isolate Bmb9393 S. aureus (2). This isolate has an increased ability to produce biofilm and a way to study this phenomenon is through computational modeling with the use of tools that allow the integration of regulatory pathways associated with biofilm production with GEM. The integrative approach is innovative because it is the first that considers the impact of gene regulation in metabolic activity for the pathogen. In addition, it is a pioneer in reconstruction of the TRN for a member belonging to the multiresistant clone BEC responsible for infections in several brazilians hospitals and soon became one of the MRSA clones one of worldwide dispersion. The methodology can be divided into three parts, with the first is the reconstruction of the draft of the TRN of BMB9393 from information obtained on the network published in 2011 for S. aureus N315 (3) enriched with both data from regulons (consisting of a transcription factor - TFs and the set of all genes regulated by them) databases bacterial as RegPrecise and Prodoric, as by manually cured regulatory interactions and prediction of regulatory elements. Still in the first stage, regulons have been identified in which the expression of all target genes was altered in the biofilm condition when compared to the planktonic condition. Regulatory pathways have also been reconstruct for each of these regulons. The second step involved the construction of the metabolic model by applying the (FBA) that utilizes linear optimization to determine the distribution of steady-state reactions in a metabolic network through maximization of a cellular objective, which, in this case, was represented by growth capacity or biomass (4). Finally, the last part includes the integration of the metabolic model with different regulatory pathways of interest, in addition to a pathway associated with the use of lactose by the cell, that was used to validate the methodology employed. Therefore, we obtain a computational model that represents what happens in the organism in a more realistic way, where metabolism and regulation are highly integrated, resulting in more reliable simulations and predictions. It is important emphasize that the integrative approach described in this paper is unpublished for the pathogen S. aures and opens new possibilities in the study of the so complex biofilm phenomenon. The analysis of the regulons associated with the biofilm condition demonstrated a high prevalence of genes related to the central metabolism of the bacteria both on biosynthesis and on compounds degradation. Besides the high use of alternative carbon sources on restrictive conditions that the biofilm growth imposes on cells in the deepest layers, showing the great influence of the central metabolism in virulence and, above all, on the growth of biofilm.O patógeno S. aureus é uma das bactérias Gram-positivas de maior versatilidade no que diz respeito a diversidade de tecidos que pode infectar e a variedade de doenças que ocasiona tanto em hospitais quanto na comunidade. Fora a enorme variabilidade de fatores de virulência e a grande capacidade de dispersão de clones multiressistentes como o BEC (Brazilian Epidemic Clone), a emergência de isolados resistentes a diferentes classes de antimicrobianos como os importantes fenótipos de MRSA (Staphylococcus aureus resistentes à meticilina) e VRSA (Staphylococcus aureus resistentes à vancomicina) representam um grave problema de saúde pública. Sendo assim, o presente trabalho teve como um dos objetivos principais reconstruir uma rede regulatória transcricional (TRN - do inglês: Transcriptional Regulatory Network ) para o isolado brasileiro Bmb9393 do patógeno Staphylococcus aureus. Al ́em disso, objetivou a identificação dos mecanismos regulatórios que atuam na formação do biofilme da bactéria em estudo e como os mesmos influenciam o metabolismo atravês de um modelo computacional integrado. O biofilme é um importante fator de virulência em infecções nosocomiais, sobretudo as que envolvem adesão a dispositivos médicos invasivos e ao tecido do hospedeiro, desempenhando um papel essencial na persistência de infecções crônicas. O mesmo pode ser definido como uma comunidade microbiana séssil em que células aderem a uma superfície abiótica ou a outras células e encontram-se envoltas por uma matriz extracelular polimérica protetora. O crescimento em biofilme confere inúmeras vantagens adaptativas em relação às células planctônicas, ou seja, de vida livre, podendo-se destacar a redução na susceptibilidade aos antibióticos e ao sistema imune do hospedeiro, dificultando a erradicação das infecções (1). Neste contexto, a presente Tese reconstruiu tanto uma TRN quanto uma nova versão do modelo metabólico em escala genômica (GEM – Genome-Scale Metabolic Model ) para o isolado brasileiro de S. aureus Bmb9393 (2). Este isolado possui um aumento na capacidade de produzir biofilme e uma maneira interessante para estudar tal fenômeno e através de um modelo computacional integrado englobando as vias regulatórias associadas à produção de biofilme e o GEM. A abordagem integrativa proposta nesta Tese é inovadora, pois é o primeiro modelo do patógeno S. aureus que considera o impacto da regulação gênica na atividade metabólica. Al ́em disso, é a primeira a reconstruir uma TRN de um dos membros pertencentes ao clone multiressistente BEC, responsável por infecções em diversos hospitais brasileiros e que tornou-se, em pouco tempo, um dos clones de MRSA de maior dispersão mundial. A metodologia pode ser dividida em três etapas principais, onde a primeira consistiu na reconstrução do draft da TRN da Bmb9393 a partir de informações propagadas da TRN do isolado N315 de S. aureus (3). A TRN inicial da Bmb9393 foi então enriquecida tanto com dados provenientes de bancos de dados de regulons bacterianos como o RegPrecise e Prodoric, como por predições de elementos regulatórios e interações obtidas da literatura, ambos curados manualmente. Ainda na parte inicial, foram identificados os fatores de transcrição, cuja expressão de todos os seus respectivos genes alvos encontrava-se alterada na condição de biofilme em relação à condição planctônica, além da reconstrução das vias regulatórias dos mesmos. A segunda etapa envolveu a construção de uma versão atualizada e curada do modelo metabólico da Bmb9393 publicado anteriormente. Com o GEM atual da Bmb9393 foi aplicado o método da análise de balanço de fluxo (FBA – Flux Balance Analysis) que utiliza otimização linear para determinar a distribuição dos fluxos das reações em estado estacionário numa rede metabólica através da maximização de um objetivo celular, que, no caso, foi representado pela capacidade de crescimento ou biomassa (4). Por fim, a última etapa consistiu na integração do modelo metabólico com as vias regulatórias de interesse, além da via regulatória representando o modelo de utilização da lactose que foi utilizada como validação da metodologia empregada. Diante disso, foi obtido um modelo computacional mais realístico e representativo do que acontece no patógeno, onde o metabolismo e a regulação encontram-se altamente integrados, resultando em simulações e predições mais confiáveis. É importante ressaltar que a abordagem integrativa descrita neste trabalho é inédita para o patógeno S. aureus e abre novas possibilidades no estudo do tão complexo fenômeno do biofilme. Os resultados obtidos com a análise dos fatores de transcrição alterados na condição de biofilme demonstraram uma grande prevalência de genes associados ao metabolismo central da bactéria tanto de biossíntese quanto de degradação de compostos. Com destaque para a ampla utilização de fontes alternativas de carbono, resultante das condições restritivas que o crescimento em biofilme impõe ás células nas camadas mais profundas do mesmo. Portanto, pode-se observar uma grande influência do metabolismo central na virulência, sobretudo na formação do biofilme. Apesar disso, o metabolismo básico de S. aureus é pouco estudado, sendo a maioria das informações obtidas de artigos antigos ou propagadas de B. subtilis, o que dificulta a compreensão dos mecanismos envolvidos na produção dos fatores de virulência do patógeno.Submitted by Parícia Vieira Silva (library@lncc.br) on 2023-02-23T17:26:16Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Maiana Costa_tese.pdf: 10411206 bytes, checksum: 7b92885b13c9c4b561644657456ff7fb (MD5)Approved for entry into archive by Parícia Vieira Silva (library@lncc.br) on 2023-02-23T17:28:47Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Maiana Costa_tese.pdf: 10411206 bytes, checksum: 7b92885b13c9c4b561644657456ff7fb (MD5)Made available in DSpace on 2023-02-23T17:30:28Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Maiana Costa_tese.pdf: 10411206 bytes, checksum: 7b92885b13c9c4b561644657456ff7fb (MD5) Previous issue date: 2018-11-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfhttp://tede-server.lncc.br:8080/retrieve/1035/Maiana%20Costa_tese.pdf.jpgporLaboratório Nacional de Computação CientíficaPrograma de Pós-Graduação em Modelagem ComputacionalLNCCBrasilCoordenação de Pós-Graduação e Aperfeiçoamento (COPGA)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessModelos biológicosStafilococos áureosModelagem computacionalRede regulatória transcricionalCNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIAModelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCCLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede-server.lncc.br:8080/tede/bitstream/tede/292/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://tede-server.lncc.br:8080/tede/bitstream/tede/292/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://tede-server.lncc.br:8080/tede/bitstream/tede/292/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://tede-server.lncc.br:8080/tede/bitstream/tede/292/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALMaiana Costa_tese.pdfMaiana Costa_tese.pdfapplication/pdf10411206http://tede-server.lncc.br:8080/tede/bitstream/tede/292/5/Maiana+Costa_tese.pdf7b92885b13c9c4b561644657456ff7fbMD55TEXTMaiana Costa_tese.pdf.txtMaiana Costa_tese.pdf.txttext/plain626165http://tede-server.lncc.br:8080/tede/bitstream/tede/292/6/Maiana+Costa_tese.pdf.txt51fd5c801be7442e8c399f490e8856adMD56THUMBNAILMaiana Costa_tese.pdf.jpgMaiana Costa_tese.pdf.jpgimage/jpeg4139http://tede-server.lncc.br:8080/tede/bitstream/tede/292/7/Maiana+Costa_tese.pdf.jpg7560ae830fbbe9888f2208e3bacb7e0eMD57tede/2922023-02-24 02:54:00.748oai:tede-server.lncc.br:tede/292Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2023-02-24T04:54Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false |
dc.title.por.fl_str_mv |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
title |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
spellingShingle |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) Costa, Maiana de Oliveira Cerqueira e Modelos biológicos Stafilococos áureos Modelagem computacional Rede regulatória transcricional CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA |
title_short |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
title_full |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
title_fullStr |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
title_full_unstemmed |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
title_sort |
Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393) |
author |
Costa, Maiana de Oliveira Cerqueira e |
author_facet |
Costa, Maiana de Oliveira Cerqueira e |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Nicolás, Marisa Fabiana |
dc.contributor.advisor2.fl_str_mv |
Santos, Marcelo Trindade dos |
dc.contributor.referee1.fl_str_mv |
Nicolás, Marisa Fabiana |
dc.contributor.referee2.fl_str_mv |
Figueiredo, Agnes Marie Sá |
dc.contributor.referee3.fl_str_mv |
Guedes, Luciane Prioli Ciapina |
dc.contributor.referee4.fl_str_mv |
Menezes, Marcio Argollo Ferreira de |
dc.contributor.referee5.fl_str_mv |
Kritz, Maurício Vieira |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8028103771845084 |
dc.contributor.author.fl_str_mv |
Costa, Maiana de Oliveira Cerqueira e |
contributor_str_mv |
Nicolás, Marisa Fabiana Santos, Marcelo Trindade dos Nicolás, Marisa Fabiana Figueiredo, Agnes Marie Sá Guedes, Luciane Prioli Ciapina Menezes, Marcio Argollo Ferreira de Kritz, Maurício Vieira |
dc.subject.por.fl_str_mv |
Modelos biológicos Stafilococos áureos Modelagem computacional Rede regulatória transcricional |
topic |
Modelos biológicos Stafilococos áureos Modelagem computacional Rede regulatória transcricional CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS BIOLOGICAS::MICROBIOLOGIA |
description |
The pathogen S. aureus is one of the Gram-positive bacterias of greater versatility in regards to the diversity of tissues it can infect and the variety of diseases it causes, both in hospitals and community. Apart from the enormous variability of virulence and the great capacity of dispersion on its multiresistant clones such as the BEC (Brazilian Epidemic Clone), the emergence of isolates resistant to different classes of antimicrobials such as the important phenotypes of MRSA (methicillin-resistant Staphylococcus aureus) and VRSA (Staphylococcus aureus resistant to vancomycin) represent a serious problem in public health. Therefore, the present study had as one of the main objectives to reconstruct a transcriptional regulatory network (TRN) for the isolate Bmb9393 of the pathogenic bacterium Staphylococcus aureus. In addition, identifying the regulatory mechanisms that act in the biofilm formation of the bacteria and how the same influences the metabolism through an integrated model. The biofilm is considered an important virulence factor in nosocomial infections, especially those involving adherence to invasive medical devices and host tissues, playing an important role in the persistence of chronic infections. The biofilm can be defined as a sessile microbial community in which cells adhere to a abiotic surface or to other cells and are found surrounded by a protective polymeric extracellular matrix. Growth in biofilm confers innumerable adaptive advantages over planktonic cells species that are dispersed outside this microenvironment, among them it is possible to highlight the decrease in the susceptibility to antibiotics and to the immune system of the host, making it hard to eradicate these infections (1). In this context, having built a TRN as well as a metabolic model on a genomic scale (GEM) for the Brazilian isolate Bmb9393 S. aureus (2). This isolate has an increased ability to produce biofilm and a way to study this phenomenon is through computational modeling with the use of tools that allow the integration of regulatory pathways associated with biofilm production with GEM. The integrative approach is innovative because it is the first that considers the impact of gene regulation in metabolic activity for the pathogen. In addition, it is a pioneer in reconstruction of the TRN for a member belonging to the multiresistant clone BEC responsible for infections in several brazilians hospitals and soon became one of the MRSA clones one of worldwide dispersion. The methodology can be divided into three parts, with the first is the reconstruction of the draft of the TRN of BMB9393 from information obtained on the network published in 2011 for S. aureus N315 (3) enriched with both data from regulons (consisting of a transcription factor - TFs and the set of all genes regulated by them) databases bacterial as RegPrecise and Prodoric, as by manually cured regulatory interactions and prediction of regulatory elements. Still in the first stage, regulons have been identified in which the expression of all target genes was altered in the biofilm condition when compared to the planktonic condition. Regulatory pathways have also been reconstruct for each of these regulons. The second step involved the construction of the metabolic model by applying the (FBA) that utilizes linear optimization to determine the distribution of steady-state reactions in a metabolic network through maximization of a cellular objective, which, in this case, was represented by growth capacity or biomass (4). Finally, the last part includes the integration of the metabolic model with different regulatory pathways of interest, in addition to a pathway associated with the use of lactose by the cell, that was used to validate the methodology employed. Therefore, we obtain a computational model that represents what happens in the organism in a more realistic way, where metabolism and regulation are highly integrated, resulting in more reliable simulations and predictions. It is important emphasize that the integrative approach described in this paper is unpublished for the pathogen S. aures and opens new possibilities in the study of the so complex biofilm phenomenon. The analysis of the regulons associated with the biofilm condition demonstrated a high prevalence of genes related to the central metabolism of the bacteria both on biosynthesis and on compounds degradation. Besides the high use of alternative carbon sources on restrictive conditions that the biofilm growth imposes on cells in the deepest layers, showing the great influence of the central metabolism in virulence and, above all, on the growth of biofilm. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-11-28 |
dc.date.accessioned.fl_str_mv |
2023-02-23T17:30:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
COSTA, M. O. C. Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393). 2018. 241 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2018. |
dc.identifier.uri.fl_str_mv |
https://tede.lncc.br/handle/tede/292 |
identifier_str_mv |
COSTA, M. O. C. Modelo metabólico em escala genômica integrado com as vias regulatórias associadas ao biofilme de Staphylococcus aureus ST239-SCCmecIII (Bmb9393). 2018. 241 f. Tese (Programa de Pós-Graduação em Modelagem Computacional) - Laboratório Nacional de Computação Científica, Petrópolis, 2018. |
url |
https://tede.lncc.br/handle/tede/292 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Modelagem Computacional |
dc.publisher.initials.fl_str_mv |
LNCC |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) |
publisher.none.fl_str_mv |
Laboratório Nacional de Computação Científica |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações do LNCC instname:Laboratório Nacional de Computação Científica (LNCC) instacron:LNCC |
instname_str |
Laboratório Nacional de Computação Científica (LNCC) |
instacron_str |
LNCC |
institution |
LNCC |
reponame_str |
Biblioteca Digital de Teses e Dissertações do LNCC |
collection |
Biblioteca Digital de Teses e Dissertações do LNCC |
bitstream.url.fl_str_mv |
http://tede-server.lncc.br:8080/tede/bitstream/tede/292/1/license.txt http://tede-server.lncc.br:8080/tede/bitstream/tede/292/2/license_url http://tede-server.lncc.br:8080/tede/bitstream/tede/292/3/license_text http://tede-server.lncc.br:8080/tede/bitstream/tede/292/4/license_rdf http://tede-server.lncc.br:8080/tede/bitstream/tede/292/5/Maiana+Costa_tese.pdf http://tede-server.lncc.br:8080/tede/bitstream/tede/292/6/Maiana+Costa_tese.pdf.txt http://tede-server.lncc.br:8080/tede/bitstream/tede/292/7/Maiana+Costa_tese.pdf.jpg |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 7b92885b13c9c4b561644657456ff7fb 51fd5c801be7442e8c399f490e8856ad 7560ae830fbbe9888f2208e3bacb7e0e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC) |
repository.mail.fl_str_mv |
library@lncc.br||library@lncc.br |
_version_ |
1797683219196280832 |