Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente

Detalhes bibliográficos
Autor(a) principal: Batista, Huoston Rodrigues
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/3046
Resumo: With the spread of the Internet and popularization of mobile technologies, relations between customers and businesses have been transformed. Comments about the company, products or services, previously restricted to circles of friendship, now are shared consistently and prolifically on social networks and websites specializing in receiving opinions from customers regarding their experiences. This phenomenon provides opportunities for knowledge discovery from these opinions, but also challenges, considering that, given their nature and form, customer reviews consist of unstructured data, which in turn require specific treatments. This research aims to present a opinion mining framework for customer knowledge discovery in relation to their experiences in restaurants, based on unstructured data extracted from social networks, applicable to the reality of Small and Medium Enterprises. The social network chosen for the development of this research was TripAdvisor, from which data were extracted from four restaurants through the technique of web scraping. The data of the first company were used to develop and refine the framework, which in turn, was applied to the data of the other companies. The data were processed through a series of text mining techniques, including Sentiment Analysis and Topic Modeling using the tidy data approach, such as tokenization, normalization, removal of stop words, removal of special characters and numbers, creation of bi-grams, calculation of relevance of terms, comparisons and counts. As main results, we highlight the generation of summaries and graphic visualizations that contributed to evidence knowledge about the relations between several expressions and terms that were not obvious. These, in turn, were discovered from the analysis made, which allowed finding latent relationships between terms cited by different customers. The Sentiment Analysis allied to the Topic Modeling revealed that the aspects most addressed by the clients refer to the food, the place, and the service, varying in intensity and polarity. The practical contribution of this work lies in the application of Text Mining to reveal patterns and enable the discovery of knowledge from the opinions of customers extracted from social networks. The framework proposed and applied in this research proved useful as a tool to better understand the client, his expectations, and even his frustrations, thus generating knowledge about the clients for the benefit of the company.
id NOVE_45b243376b9939cc6c8f27d060c7b85f
oai_identifier_str oai:localhost:tede/3046
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486Silva, Leandro Augusto dahttp://lattes.cnpq.br/1396385111251741Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610http://lattes.cnpq.br/7755088716675035Batista, Huoston Rodrigues2022-08-15T15:28:49Z2017-12-15Batista, Huoston Rodrigues. Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente. 2017. 186 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3046With the spread of the Internet and popularization of mobile technologies, relations between customers and businesses have been transformed. Comments about the company, products or services, previously restricted to circles of friendship, now are shared consistently and prolifically on social networks and websites specializing in receiving opinions from customers regarding their experiences. This phenomenon provides opportunities for knowledge discovery from these opinions, but also challenges, considering that, given their nature and form, customer reviews consist of unstructured data, which in turn require specific treatments. This research aims to present a opinion mining framework for customer knowledge discovery in relation to their experiences in restaurants, based on unstructured data extracted from social networks, applicable to the reality of Small and Medium Enterprises. The social network chosen for the development of this research was TripAdvisor, from which data were extracted from four restaurants through the technique of web scraping. The data of the first company were used to develop and refine the framework, which in turn, was applied to the data of the other companies. The data were processed through a series of text mining techniques, including Sentiment Analysis and Topic Modeling using the tidy data approach, such as tokenization, normalization, removal of stop words, removal of special characters and numbers, creation of bi-grams, calculation of relevance of terms, comparisons and counts. As main results, we highlight the generation of summaries and graphic visualizations that contributed to evidence knowledge about the relations between several expressions and terms that were not obvious. These, in turn, were discovered from the analysis made, which allowed finding latent relationships between terms cited by different customers. The Sentiment Analysis allied to the Topic Modeling revealed that the aspects most addressed by the clients refer to the food, the place, and the service, varying in intensity and polarity. The practical contribution of this work lies in the application of Text Mining to reveal patterns and enable the discovery of knowledge from the opinions of customers extracted from social networks. The framework proposed and applied in this research proved useful as a tool to better understand the client, his expectations, and even his frustrations, thus generating knowledge about the clients for the benefit of the company.Com a disseminação da Internet e popularização de tecnologias móveis, as relações entre clientes e empresas sofreram transformações. Comentários em relação a empresas, produtos ou serviços, antes restritos aos círculos de amizade, agora são compartilhados de forma constante e prolífica em redes sociais e sites especializados em receber opiniões de clientes em relação às suas experiências. Este fenômeno proporciona oportunidades para descoberta de conhecimento a partir destas opiniões, mas também desafios, considerando-se que, dada sua natureza e forma, as opiniões dos clientes consistem em dados não estruturados, que por sua vez demandam tratamentos específicos. Esta pesquisa tem por objetivo apresentar um framework para mineração de opiniões visando a descoberta de conhecimento do cliente em relação às suas experiências em empresas (restaurantes), com base em dados não estruturados extraídos de redes sociais, aplicável à realidade de pequenas e médias empresas. A rede social abordada nesta pesquisa foi o TripAdvisor, de onde foram extraídos dados de quatro empresas (restaurantes) por meio da técnica de web scraping. Os dados da primeira empresa foram usados para desenvolver e refinar o framework, que por sua vez, foi aplicado aos dados das demais. Estes dados foram submetidos a técnicas de mineração de textos como Análise de Sentimentos e Modelagem de Tópicos por meio da abordagem tidy data tais quais, tokenização, normalização, remoção de stop words, remoção de caracteres especiais e números, criação de bi-gramas, cálculo de pesos dos termos, comparações e contagens. Como principais resultados, destaca-se a geração de sumarizações e visualizações gráficas que contribuíram para evidenciar conhecimento acerca das relações entre diversas expressões e termos que não eram óbvias. Estas, por sua vez, foram descobertas a partir das análises efetuadas, que permitiram encontrar relações latentes entre termos citados por diferentes clientes. A Análise de Sentimentos aliada à Modelagem de tópicos revelou que os aspectos mais abordados pelos clientes se referem à comida, ao lugar e o atendimento, variando em intensidade e polaridade. A contribuição prática deste trabalho reside na aplicação da Mineração de Textos para revelar padrões e possibilitar a descoberta de conhecimento a partir das opiniões de clientes extraídas de redes sociais. O framework empregado provou-se útil como ferramenta para compreender melhor o cliente, suas expectativas e até mesmo suas frustrações, gerando assim conhecimento acerca dos clientes para benefício da empresa.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2022-08-15T15:28:49Z No. of bitstreams: 1 Huoston Rodrigues Batista.pdf: 10910820 bytes, checksum: 5e49c4a775e4c751e31458672dea3ad5 (MD5)Made available in DSpace on 2022-08-15T15:28:49Z (GMT). No. of bitstreams: 1 Huoston Rodrigues Batista.pdf: 10910820 bytes, checksum: 5e49c4a775e4c751e31458672dea3ad5 (MD5) Previous issue date: 2017-12-15application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticamineração de dadosmineração de textosmineração de opiniõesconhecimento do clienteredes sociaisdata miningtext miningopinion miningcustomer knowledgesocial networksCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOFramework para mineração de opiniões em mídias sociais para descoberta de conhecimento do clienteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALHuoston Rodrigues Batista.pdfHuoston Rodrigues Batista.pdfapplication/pdf10910820http://localhost:8080/tede/bitstream/tede/3046/2/Huoston+Rodrigues+Batista.pdf5e49c4a775e4c751e31458672dea3ad5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3046/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/30462022-08-15 12:28:49.805oai:localhost:tede/3046Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2022-08-15T15:28:49Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
title Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
spellingShingle Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
Batista, Huoston Rodrigues
mineração de dados
mineração de textos
mineração de opiniões
conhecimento do cliente
redes sociais
data mining
text mining
opinion mining
customer knowledge
social networks
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
title_full Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
title_fullStr Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
title_full_unstemmed Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
title_sort Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
author Batista, Huoston Rodrigues
author_facet Batista, Huoston Rodrigues
author_role author
dc.contributor.advisor1.fl_str_mv Gaspar, Marcos Antônio
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3809285940688486
dc.contributor.referee1.fl_str_mv Gaspar, Marcos Antônio
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3809285940688486
dc.contributor.referee2.fl_str_mv Silva, Leandro Augusto da
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1396385111251741
dc.contributor.referee3.fl_str_mv Sassi, Renato José
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7755088716675035
dc.contributor.author.fl_str_mv Batista, Huoston Rodrigues
contributor_str_mv Gaspar, Marcos Antônio
Gaspar, Marcos Antônio
Silva, Leandro Augusto da
Sassi, Renato José
dc.subject.por.fl_str_mv mineração de dados
mineração de textos
mineração de opiniões
conhecimento do cliente
redes sociais
topic mineração de dados
mineração de textos
mineração de opiniões
conhecimento do cliente
redes sociais
data mining
text mining
opinion mining
customer knowledge
social networks
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv data mining
text mining
opinion mining
customer knowledge
social networks
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description With the spread of the Internet and popularization of mobile technologies, relations between customers and businesses have been transformed. Comments about the company, products or services, previously restricted to circles of friendship, now are shared consistently and prolifically on social networks and websites specializing in receiving opinions from customers regarding their experiences. This phenomenon provides opportunities for knowledge discovery from these opinions, but also challenges, considering that, given their nature and form, customer reviews consist of unstructured data, which in turn require specific treatments. This research aims to present a opinion mining framework for customer knowledge discovery in relation to their experiences in restaurants, based on unstructured data extracted from social networks, applicable to the reality of Small and Medium Enterprises. The social network chosen for the development of this research was TripAdvisor, from which data were extracted from four restaurants through the technique of web scraping. The data of the first company were used to develop and refine the framework, which in turn, was applied to the data of the other companies. The data were processed through a series of text mining techniques, including Sentiment Analysis and Topic Modeling using the tidy data approach, such as tokenization, normalization, removal of stop words, removal of special characters and numbers, creation of bi-grams, calculation of relevance of terms, comparisons and counts. As main results, we highlight the generation of summaries and graphic visualizations that contributed to evidence knowledge about the relations between several expressions and terms that were not obvious. These, in turn, were discovered from the analysis made, which allowed finding latent relationships between terms cited by different customers. The Sentiment Analysis allied to the Topic Modeling revealed that the aspects most addressed by the clients refer to the food, the place, and the service, varying in intensity and polarity. The practical contribution of this work lies in the application of Text Mining to reveal patterns and enable the discovery of knowledge from the opinions of customers extracted from social networks. The framework proposed and applied in this research proved useful as a tool to better understand the client, his expectations, and even his frustrations, thus generating knowledge about the clients for the benefit of the company.
publishDate 2017
dc.date.issued.fl_str_mv 2017-12-15
dc.date.accessioned.fl_str_mv 2022-08-15T15:28:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Batista, Huoston Rodrigues. Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente. 2017. 186 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/3046
identifier_str_mv Batista, Huoston Rodrigues. Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente. 2017. 186 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/3046
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/3046/2/Huoston+Rodrigues+Batista.pdf
http://localhost:8080/tede/bitstream/tede/3046/1/license.txt
bitstream.checksum.fl_str_mv 5e49c4a775e4c751e31458672dea3ad5
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016888783732736