Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da Uninove |
Texto Completo: | http://bibliotecatede.uninove.br/handle/tede/3046 |
Resumo: | With the spread of the Internet and popularization of mobile technologies, relations between customers and businesses have been transformed. Comments about the company, products or services, previously restricted to circles of friendship, now are shared consistently and prolifically on social networks and websites specializing in receiving opinions from customers regarding their experiences. This phenomenon provides opportunities for knowledge discovery from these opinions, but also challenges, considering that, given their nature and form, customer reviews consist of unstructured data, which in turn require specific treatments. This research aims to present a opinion mining framework for customer knowledge discovery in relation to their experiences in restaurants, based on unstructured data extracted from social networks, applicable to the reality of Small and Medium Enterprises. The social network chosen for the development of this research was TripAdvisor, from which data were extracted from four restaurants through the technique of web scraping. The data of the first company were used to develop and refine the framework, which in turn, was applied to the data of the other companies. The data were processed through a series of text mining techniques, including Sentiment Analysis and Topic Modeling using the tidy data approach, such as tokenization, normalization, removal of stop words, removal of special characters and numbers, creation of bi-grams, calculation of relevance of terms, comparisons and counts. As main results, we highlight the generation of summaries and graphic visualizations that contributed to evidence knowledge about the relations between several expressions and terms that were not obvious. These, in turn, were discovered from the analysis made, which allowed finding latent relationships between terms cited by different customers. The Sentiment Analysis allied to the Topic Modeling revealed that the aspects most addressed by the clients refer to the food, the place, and the service, varying in intensity and polarity. The practical contribution of this work lies in the application of Text Mining to reveal patterns and enable the discovery of knowledge from the opinions of customers extracted from social networks. The framework proposed and applied in this research proved useful as a tool to better understand the client, his expectations, and even his frustrations, thus generating knowledge about the clients for the benefit of the company. |
id |
NOVE_45b243376b9939cc6c8f27d060c7b85f |
---|---|
oai_identifier_str |
oai:localhost:tede/3046 |
network_acronym_str |
NOVE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
repository_id_str |
|
spelling |
Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486Gaspar, Marcos Antôniohttp://lattes.cnpq.br/3809285940688486Silva, Leandro Augusto dahttp://lattes.cnpq.br/1396385111251741Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610http://lattes.cnpq.br/7755088716675035Batista, Huoston Rodrigues2022-08-15T15:28:49Z2017-12-15Batista, Huoston Rodrigues. Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente. 2017. 186 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/3046With the spread of the Internet and popularization of mobile technologies, relations between customers and businesses have been transformed. Comments about the company, products or services, previously restricted to circles of friendship, now are shared consistently and prolifically on social networks and websites specializing in receiving opinions from customers regarding their experiences. This phenomenon provides opportunities for knowledge discovery from these opinions, but also challenges, considering that, given their nature and form, customer reviews consist of unstructured data, which in turn require specific treatments. This research aims to present a opinion mining framework for customer knowledge discovery in relation to their experiences in restaurants, based on unstructured data extracted from social networks, applicable to the reality of Small and Medium Enterprises. The social network chosen for the development of this research was TripAdvisor, from which data were extracted from four restaurants through the technique of web scraping. The data of the first company were used to develop and refine the framework, which in turn, was applied to the data of the other companies. The data were processed through a series of text mining techniques, including Sentiment Analysis and Topic Modeling using the tidy data approach, such as tokenization, normalization, removal of stop words, removal of special characters and numbers, creation of bi-grams, calculation of relevance of terms, comparisons and counts. As main results, we highlight the generation of summaries and graphic visualizations that contributed to evidence knowledge about the relations between several expressions and terms that were not obvious. These, in turn, were discovered from the analysis made, which allowed finding latent relationships between terms cited by different customers. The Sentiment Analysis allied to the Topic Modeling revealed that the aspects most addressed by the clients refer to the food, the place, and the service, varying in intensity and polarity. The practical contribution of this work lies in the application of Text Mining to reveal patterns and enable the discovery of knowledge from the opinions of customers extracted from social networks. The framework proposed and applied in this research proved useful as a tool to better understand the client, his expectations, and even his frustrations, thus generating knowledge about the clients for the benefit of the company.Com a disseminação da Internet e popularização de tecnologias móveis, as relações entre clientes e empresas sofreram transformações. Comentários em relação a empresas, produtos ou serviços, antes restritos aos círculos de amizade, agora são compartilhados de forma constante e prolífica em redes sociais e sites especializados em receber opiniões de clientes em relação às suas experiências. Este fenômeno proporciona oportunidades para descoberta de conhecimento a partir destas opiniões, mas também desafios, considerando-se que, dada sua natureza e forma, as opiniões dos clientes consistem em dados não estruturados, que por sua vez demandam tratamentos específicos. Esta pesquisa tem por objetivo apresentar um framework para mineração de opiniões visando a descoberta de conhecimento do cliente em relação às suas experiências em empresas (restaurantes), com base em dados não estruturados extraídos de redes sociais, aplicável à realidade de pequenas e médias empresas. A rede social abordada nesta pesquisa foi o TripAdvisor, de onde foram extraídos dados de quatro empresas (restaurantes) por meio da técnica de web scraping. Os dados da primeira empresa foram usados para desenvolver e refinar o framework, que por sua vez, foi aplicado aos dados das demais. Estes dados foram submetidos a técnicas de mineração de textos como Análise de Sentimentos e Modelagem de Tópicos por meio da abordagem tidy data tais quais, tokenização, normalização, remoção de stop words, remoção de caracteres especiais e números, criação de bi-gramas, cálculo de pesos dos termos, comparações e contagens. Como principais resultados, destaca-se a geração de sumarizações e visualizações gráficas que contribuíram para evidenciar conhecimento acerca das relações entre diversas expressões e termos que não eram óbvias. Estas, por sua vez, foram descobertas a partir das análises efetuadas, que permitiram encontrar relações latentes entre termos citados por diferentes clientes. A Análise de Sentimentos aliada à Modelagem de tópicos revelou que os aspectos mais abordados pelos clientes se referem à comida, ao lugar e o atendimento, variando em intensidade e polaridade. A contribuição prática deste trabalho reside na aplicação da Mineração de Textos para revelar padrões e possibilitar a descoberta de conhecimento a partir das opiniões de clientes extraídas de redes sociais. O framework empregado provou-se útil como ferramenta para compreender melhor o cliente, suas expectativas e até mesmo suas frustrações, gerando assim conhecimento acerca dos clientes para benefício da empresa.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2022-08-15T15:28:49Z No. of bitstreams: 1 Huoston Rodrigues Batista.pdf: 10910820 bytes, checksum: 5e49c4a775e4c751e31458672dea3ad5 (MD5)Made available in DSpace on 2022-08-15T15:28:49Z (GMT). No. of bitstreams: 1 Huoston Rodrigues Batista.pdf: 10910820 bytes, checksum: 5e49c4a775e4c751e31458672dea3ad5 (MD5) Previous issue date: 2017-12-15application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticamineração de dadosmineração de textosmineração de opiniõesconhecimento do clienteredes sociaisdata miningtext miningopinion miningcustomer knowledgesocial networksCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOFramework para mineração de opiniões em mídias sociais para descoberta de conhecimento do clienteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALHuoston Rodrigues Batista.pdfHuoston Rodrigues Batista.pdfapplication/pdf10910820http://localhost:8080/tede/bitstream/tede/3046/2/Huoston+Rodrigues+Batista.pdf5e49c4a775e4c751e31458672dea3ad5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/3046/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/30462022-08-15 12:28:49.805oai:localhost:tede/3046Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2022-08-15T15:28:49Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false |
dc.title.por.fl_str_mv |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
title |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
spellingShingle |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente Batista, Huoston Rodrigues mineração de dados mineração de textos mineração de opiniões conhecimento do cliente redes sociais data mining text mining opinion mining customer knowledge social networks CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
title_full |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
title_fullStr |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
title_full_unstemmed |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
title_sort |
Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente |
author |
Batista, Huoston Rodrigues |
author_facet |
Batista, Huoston Rodrigues |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Gaspar, Marcos Antônio |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3809285940688486 |
dc.contributor.referee1.fl_str_mv |
Gaspar, Marcos Antônio |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/3809285940688486 |
dc.contributor.referee2.fl_str_mv |
Silva, Leandro Augusto da |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1396385111251741 |
dc.contributor.referee3.fl_str_mv |
Sassi, Renato José |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/8750334661789610 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7755088716675035 |
dc.contributor.author.fl_str_mv |
Batista, Huoston Rodrigues |
contributor_str_mv |
Gaspar, Marcos Antônio Gaspar, Marcos Antônio Silva, Leandro Augusto da Sassi, Renato José |
dc.subject.por.fl_str_mv |
mineração de dados mineração de textos mineração de opiniões conhecimento do cliente redes sociais |
topic |
mineração de dados mineração de textos mineração de opiniões conhecimento do cliente redes sociais data mining text mining opinion mining customer knowledge social networks CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
data mining text mining opinion mining customer knowledge social networks |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
With the spread of the Internet and popularization of mobile technologies, relations between customers and businesses have been transformed. Comments about the company, products or services, previously restricted to circles of friendship, now are shared consistently and prolifically on social networks and websites specializing in receiving opinions from customers regarding their experiences. This phenomenon provides opportunities for knowledge discovery from these opinions, but also challenges, considering that, given their nature and form, customer reviews consist of unstructured data, which in turn require specific treatments. This research aims to present a opinion mining framework for customer knowledge discovery in relation to their experiences in restaurants, based on unstructured data extracted from social networks, applicable to the reality of Small and Medium Enterprises. The social network chosen for the development of this research was TripAdvisor, from which data were extracted from four restaurants through the technique of web scraping. The data of the first company were used to develop and refine the framework, which in turn, was applied to the data of the other companies. The data were processed through a series of text mining techniques, including Sentiment Analysis and Topic Modeling using the tidy data approach, such as tokenization, normalization, removal of stop words, removal of special characters and numbers, creation of bi-grams, calculation of relevance of terms, comparisons and counts. As main results, we highlight the generation of summaries and graphic visualizations that contributed to evidence knowledge about the relations between several expressions and terms that were not obvious. These, in turn, were discovered from the analysis made, which allowed finding latent relationships between terms cited by different customers. The Sentiment Analysis allied to the Topic Modeling revealed that the aspects most addressed by the clients refer to the food, the place, and the service, varying in intensity and polarity. The practical contribution of this work lies in the application of Text Mining to reveal patterns and enable the discovery of knowledge from the opinions of customers extracted from social networks. The framework proposed and applied in this research proved useful as a tool to better understand the client, his expectations, and even his frustrations, thus generating knowledge about the clients for the benefit of the company. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-12-15 |
dc.date.accessioned.fl_str_mv |
2022-08-15T15:28:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Batista, Huoston Rodrigues. Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente. 2017. 186 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
dc.identifier.uri.fl_str_mv |
http://bibliotecatede.uninove.br/handle/tede/3046 |
identifier_str_mv |
Batista, Huoston Rodrigues. Framework para mineração de opiniões em mídias sociais para descoberta de conhecimento do cliente. 2017. 186 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
url |
http://bibliotecatede.uninove.br/handle/tede/3046 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.cnpq.fl_str_mv |
8930092515683771531 |
dc.relation.confidence.fl_str_mv |
600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
dc.publisher.initials.fl_str_mv |
UNINOVE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Informática |
publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Uninove instname:Universidade Nove de Julho (UNINOVE) instacron:UNINOVE |
instname_str |
Universidade Nove de Julho (UNINOVE) |
instacron_str |
UNINOVE |
institution |
UNINOVE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
collection |
Biblioteca Digital de Teses e Dissertações da Uninove |
bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/3046/2/Huoston+Rodrigues+Batista.pdf http://localhost:8080/tede/bitstream/tede/3046/1/license.txt |
bitstream.checksum.fl_str_mv |
5e49c4a775e4c751e31458672dea3ad5 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE) |
repository.mail.fl_str_mv |
bibliotecatede@uninove.br||bibliotecatede@uninove.br |
_version_ |
1811016888783732736 |