Aplicação de Deep Learning em dados refinados para Mineração de Opiniões

Detalhes bibliográficos
Autor(a) principal: Jost, Ingo
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
Texto Completo: http://www.repositorio.jesuita.org.br/handle/UNISINOS/3841
Resumo: Deep Learning é uma sub-área de Aprendizado de Máquina que tem obtido resultados sa- tisfatórios em várias áreas de aplicação, implementada por diferentes algoritmos, como Stacked Auto-encoders ou Deep Belief Networks. Este trabalho propõe uma modelagem que aplica uma implementação de um classificador que aborda técnicas de Deep Learning em Mineração de Opiniões, área que tem sido alvo de constantes estudos, dada a necessidade das corporações buscarem a compreensão que clientes possuem de seus produtos ou serviços. O favorecimento do crescimento de Mineração de Opiniões também se dá pelo ambiente colaborativo da Web 2.0, em que várias ferramentas propiciam a emissão de opiniões. Os dados utilizados passaram por um refinamento na etapa de pré-processamento com o intuito de aplicar Deep Learning, da qual uma das principais atribuições é a seleção de características, em dados refinados em vez de dados mais brutos. A promissora tecnologia de Deep Learning combinada com a estratégia de refinamento demonstrou nos experimentos a obtenção de resultados competitivos com outros estudos relacionados e abrem perspectiva de extensão deste trabalho.
id USIN_0153086dd5a858e932507f914d8ffc64
oai_identifier_str oai:www.repositorio.jesuita.org.br:UNISINOS/3841
network_acronym_str USIN
network_name_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
repository_id_str
spelling 2015-06-12T19:13:14Z2015-06-12T19:13:14Z2015-02-26Submitted by Maicon Juliano Schmidt (maicons) on 2015-06-12T19:13:14Z No. of bitstreams: 1 Ingo Jost.pdf: 1217467 bytes, checksum: bf67cd6724b1cd182a12a3cd7b5af1eb (MD5)Made available in DSpace on 2015-06-12T19:13:14Z (GMT). No. of bitstreams: 1 Ingo Jost.pdf: 1217467 bytes, checksum: bf67cd6724b1cd182a12a3cd7b5af1eb (MD5) Previous issue date: 2015-02-26Deep Learning é uma sub-área de Aprendizado de Máquina que tem obtido resultados sa- tisfatórios em várias áreas de aplicação, implementada por diferentes algoritmos, como Stacked Auto-encoders ou Deep Belief Networks. Este trabalho propõe uma modelagem que aplica uma implementação de um classificador que aborda técnicas de Deep Learning em Mineração de Opiniões, área que tem sido alvo de constantes estudos, dada a necessidade das corporações buscarem a compreensão que clientes possuem de seus produtos ou serviços. O favorecimento do crescimento de Mineração de Opiniões também se dá pelo ambiente colaborativo da Web 2.0, em que várias ferramentas propiciam a emissão de opiniões. Os dados utilizados passaram por um refinamento na etapa de pré-processamento com o intuito de aplicar Deep Learning, da qual uma das principais atribuições é a seleção de características, em dados refinados em vez de dados mais brutos. A promissora tecnologia de Deep Learning combinada com a estratégia de refinamento demonstrou nos experimentos a obtenção de resultados competitivos com outros estudos relacionados e abrem perspectiva de extensão deste trabalho.Deep Learning is a Machine Learning’s sub-area that have achieved satisfactory results in different application areas, implemented by different algorithms, such as Stacked Auto- encoders or Deep Belief Networks. This work proposes a research that applies a classifier that implements Deep Learning concepts in Opinion Mining, area has been approached by con- stant researches, due the need of corporations seeking the understanding that customers have of your products or services. The Opinion Mining’s growth is favored also by the collaborative Web 2.0 environment, where multiple tools provide issuing opinions. The data used for exper- iments were refined in preprocessing step in order to apply Deep Learning, which it one of the main tasks the feature selection, in refined data, instead of applying Deep Learning in more raw data. The refinement strategy combined with the promising technology of Deep Learning has demonstrated in preliminary experiments the achievement of competitive results with other studies and opens the perspective for extension of this work.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorJost, Ingohttp://lattes.cnpq.br/9941407109816616http://lattes.cnpq.br/4658545839496086Valiati, Joao FranciscoUniversidade do Vale do Rio dos SinosPrograma de Pós-Graduação em Computação AplicadaUnisinosBrasilEscola PolitécnicaAplicação de Deep Learning em dados refinados para Mineração de OpiniõesACCNPQ::Ciências Exatas e da Terra::Ciência da ComputaçãoMineração de opiniõesDeep learningDeep belief networksOpinion mininginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.repositorio.jesuita.org.br/handle/UNISINOS/3841info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)instname:Universidade do Vale do Rio dos Sinos (UNISINOS)instacron:UNISINOSORIGINALIngo Jost.pdfIngo Jost.pdfapplication/pdf1217467http://repositorio.jesuita.org.br/bitstream/UNISINOS/3841/1/Ingo+Jost.pdfbf67cd6724b1cd182a12a3cd7b5af1ebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82099http://repositorio.jesuita.org.br/bitstream/UNISINOS/3841/2/license.txte130fff006551e19abf270f718b7ab21MD52UNISINOS/38412015-06-12 16:14:03.046oai:www.repositorio.jesuita.org.br:UNISINOS/3841Ck5PVEE6IENPTE9RVUUgQVFVSSBBIFNVQSBQUj9QUklBIExJQ0VOP0EKCkVzdGEgbGljZW4/YSBkZSBleGVtcGxvID8gZm9ybmVjaWRhIGFwZW5hcyBwYXJhIGZpbnMgaW5mb3JtYXRpdm9zLgoKTGljZW4/YSBERSBESVNUUklCVUk/P08gTj9PLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhPz9vIGRlc3RhIGxpY2VuP2EsIHZvYz8gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlID8gClVuaXZlcnNpZGFkZSBkbyBWYWxlIGRvIFJpbyBkb3MgU2lub3MgKFVOSVNJTk9TKSBvIGRpcmVpdG8gbj9vLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgCmRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cj9uaWNvIGUgCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyA/dWRpbyBvdSB2P2Rlby4KClZvYz8gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGU/ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gCnBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YT8/by4KClZvYz8gdGFtYj9tIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjP3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YT8/byBwYXJhIGZpbnMgZGUgc2VndXJhbj9hLCBiYWNrLXVwIGUgcHJlc2VydmE/P28uCgpWb2M/IGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gPyBvcmlnaW5hbCBlIHF1ZSB2b2M/IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIApuZXN0YSBsaWNlbj9hLiBWb2M/IHRhbWI/bSBkZWNsYXJhIHF1ZSBvIGRlcD9zaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIG4/bywgcXVlIHNlamEgZGUgc2V1IApjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1P20uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvYz8gbj9vIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvYz8gCmRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3M/byBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyID8gU2lnbGEgZGUgVW5pdmVyc2lkYWRlIApvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW4/YSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0PyBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZT9kbyBkYSB0ZXNlIG91IGRpc3NlcnRhPz9vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEE/P08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9DP05JTyBPVSAKQVBPSU8gREUgVU1BIEFHP05DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyBPUkdBTklTTU8gUVVFIE4/TyBTRUpBIEEgU0lHTEEgREUgClVOSVZFUlNJREFERSwgVk9DPyBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVM/TyBDT01PIApUQU1CP00gQVMgREVNQUlTIE9CUklHQT8/RVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhPz9vLCBlIG4/byBmYXI/IHF1YWxxdWVyIGFsdGVyYT8/bywgYWw/bSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbj9hLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://www.repositorio.jesuita.org.br/oai/requestopendoar:2015-06-12T19:14:03Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)false
dc.title.pt_BR.fl_str_mv Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
title Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
spellingShingle Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
Jost, Ingo
ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Mineração de opiniões
Deep learning
Deep belief networks
Opinion mining
title_short Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
title_full Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
title_fullStr Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
title_full_unstemmed Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
title_sort Aplicação de Deep Learning em dados refinados para Mineração de Opiniões
author Jost, Ingo
author_facet Jost, Ingo
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9941407109816616
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4658545839496086
dc.contributor.author.fl_str_mv Jost, Ingo
dc.contributor.advisor1.fl_str_mv Valiati, Joao Francisco
contributor_str_mv Valiati, Joao Francisco
dc.subject.cnpq.fl_str_mv ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
topic ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Mineração de opiniões
Deep learning
Deep belief networks
Opinion mining
dc.subject.por.fl_str_mv Mineração de opiniões
dc.subject.eng.fl_str_mv Deep learning
Deep belief networks
Opinion mining
description Deep Learning é uma sub-área de Aprendizado de Máquina que tem obtido resultados sa- tisfatórios em várias áreas de aplicação, implementada por diferentes algoritmos, como Stacked Auto-encoders ou Deep Belief Networks. Este trabalho propõe uma modelagem que aplica uma implementação de um classificador que aborda técnicas de Deep Learning em Mineração de Opiniões, área que tem sido alvo de constantes estudos, dada a necessidade das corporações buscarem a compreensão que clientes possuem de seus produtos ou serviços. O favorecimento do crescimento de Mineração de Opiniões também se dá pelo ambiente colaborativo da Web 2.0, em que várias ferramentas propiciam a emissão de opiniões. Os dados utilizados passaram por um refinamento na etapa de pré-processamento com o intuito de aplicar Deep Learning, da qual uma das principais atribuições é a seleção de características, em dados refinados em vez de dados mais brutos. A promissora tecnologia de Deep Learning combinada com a estratégia de refinamento demonstrou nos experimentos a obtenção de resultados competitivos com outros estudos relacionados e abrem perspectiva de extensão deste trabalho.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-06-12T19:13:14Z
dc.date.available.fl_str_mv 2015-06-12T19:13:14Z
dc.date.issued.fl_str_mv 2015-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.jesuita.org.br/handle/UNISINOS/3841
url http://www.repositorio.jesuita.org.br/handle/UNISINOS/3841
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação Aplicada
dc.publisher.initials.fl_str_mv Unisinos
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
instname:Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron:UNISINOS
instname_str Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron_str UNISINOS
institution UNISINOS
reponame_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
collection Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
bitstream.url.fl_str_mv http://repositorio.jesuita.org.br/bitstream/UNISINOS/3841/1/Ingo+Jost.pdf
http://repositorio.jesuita.org.br/bitstream/UNISINOS/3841/2/license.txt
bitstream.checksum.fl_str_mv bf67cd6724b1cd182a12a3cd7b5af1eb
e130fff006551e19abf270f718b7ab21
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)
repository.mail.fl_str_mv
_version_ 1801844962250194944