Métodos de busca local em problemas de escalonamento da produção em ambientes job shop

Detalhes bibliográficos
Autor(a) principal: Santana, Marcos Fernando Machado de Jesus de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/1945
Resumo: Solving the problem of production scheduling is an important task in production planning and control. This problem consists, in short, to define a sequence of realization of the production operations for each of the resources (machines) available. This is a complex problem, especially in job shop-type production environments in which each job is defined as a single set of tasks that must be processed in a predefined order and different from that of other jobs. These are the Job Shop Scheduling Problems (JSSP). For smaller problems exact methods have been considered the most indicated because they find the optimal solution in acceptable computational times. For larger problems, which grow in a non-linear way in relation to the number of jobs and machines, heuristic solutions have been more used as a function of computational cost, although they do not guarantee to find the optimal solution. The heuristic and metaheuristic methods have gained prominence in the literature, as is the case of the Genetic Algorithm (GA), which is based on the theory of evolution of the species. However, the genetic algorithm without the application of a local search technique, which is a search in the vicinity of a solution to refine it, does not present satisfactory results for the problem specifically addressed. The objective of this work is to compare different representations in a local search method, together with GA, for the scheduling problem in the job shop environment. For the tests of this work, local search method was evaluated in instances known in the literature. Search methods with defined neighborhoods from direct and indirect representations of the solution in the Genetic Algorithm were compared. The results show that methods with indirect approach defined from indirect representations of the solution are more effective for the problems tested, compared to the direct approach, especially in relation to the computational cost.
id NOVE_5150a6f31d6ec0e88627ed4b44fc3e12
oai_identifier_str oai:localhost:tede/1945
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Pereira, Fabio HenriquePereira, Fabio HenriqueTolosa, Thiago Antonio Grandi deAraújo, Sidnei Alves dehttp://lattes.cnpq.br/3278877498378740Santana, Marcos Fernando Machado de Jesus de2018-12-27T18:29:39Z2017-08-30Santana, Marcos Fernando Machado de Jesus de. Métodos de busca local em problemas de escalonamento da produção em ambientes job shop. 2017. 78 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/1945Solving the problem of production scheduling is an important task in production planning and control. This problem consists, in short, to define a sequence of realization of the production operations for each of the resources (machines) available. This is a complex problem, especially in job shop-type production environments in which each job is defined as a single set of tasks that must be processed in a predefined order and different from that of other jobs. These are the Job Shop Scheduling Problems (JSSP). For smaller problems exact methods have been considered the most indicated because they find the optimal solution in acceptable computational times. For larger problems, which grow in a non-linear way in relation to the number of jobs and machines, heuristic solutions have been more used as a function of computational cost, although they do not guarantee to find the optimal solution. The heuristic and metaheuristic methods have gained prominence in the literature, as is the case of the Genetic Algorithm (GA), which is based on the theory of evolution of the species. However, the genetic algorithm without the application of a local search technique, which is a search in the vicinity of a solution to refine it, does not present satisfactory results for the problem specifically addressed. The objective of this work is to compare different representations in a local search method, together with GA, for the scheduling problem in the job shop environment. For the tests of this work, local search method was evaluated in instances known in the literature. Search methods with defined neighborhoods from direct and indirect representations of the solution in the Genetic Algorithm were compared. The results show that methods with indirect approach defined from indirect representations of the solution are more effective for the problems tested, compared to the direct approach, especially in relation to the computational cost.Resolver o problema de escalonamento da produção representa uma importante tarefa do planejamento e controle da produção. Esse problema consiste, resumidamente, em definir uma sequência de realização das operações de produção para cada um dos recursos (máquinas) disponíveis. Trata-se de um problema complexo, especialmente em ambientes de produção do tipo job shop nos quais cada job é definido como um conjunto único de tarefas que devem ser processadas em uma ordem pré-definida e diferente da dos demais jobs. Esses são os chamados Job Shop Scheduling Problems (JSSP). Para problemas menores, métodos exatos têm sido considerados os mais indicados por encontrarem a solução ótima em tempos computacionais aceitáveis. Já para problemas maiores, que crescem de forma não linear em relação ao número de jobs e máquinas, soluções heurísticas têm sido mais utilizadas em função do custo computacional, ainda que não garantam encontrar a solução ótima. Os métodos heurísticos e metaheurísticos têm ganhado destaque na literatura, como é o caso do Algoritmo Genético (AG) que é baseado na teoria da evolução das espécies. Entretanto, o algoritmo genético sem a aplicação de uma técnica de busca local, que é uma busca na vizinhança de uma solução com objetivo de refiná-la, não tem apresentado resultados satisfatórios para o problema abordado. O objetivo deste trabalho é comparar diferentes representações em um método de busca local, em conjunto com o AG, para o problema de escalonamento em ambiente job shop. Para os testes deste trabalho, método de busca local foi avaliado em instâncias conhecidas na literatura. Foram comparados métodos de busca com vizinhanças definidas a partir de representações diretas e indiretas da solução no Algoritmo Genético. Os resultados mostram que o método com abordagem indireta definida a partir de representações indiretas da solução são mais efetivos para os problemas testados, comparado com a abordagem direta, especialmente em relação ao custo computacional.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2018-12-27T18:29:39Z No. of bitstreams: 1 Marcos Fernando Machado de Jesus de Santana.pdf: 1588561 bytes, checksum: a0811f14c7afac396441ab2ebf98f5be (MD5)Made available in DSpace on 2018-12-27T18:29:39Z (GMT). No. of bitstreams: 1 Marcos Fernando Machado de Jesus de Santana.pdf: 1588561 bytes, checksum: a0811f14c7afac396441ab2ebf98f5be (MD5) Previous issue date: 2017-08-30application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação de Mestrado e Doutorado em Engenharia de ProduçãoUNINOVEBrasilEngenhariaescalonamentojob shop schedulingmetaheurísticosalgoritmo genéticoabordagem indiretaschedulingjob shop schedulingmetaheuristicsgenetic algorithmindirect approachENGENHARIAS::ENGENHARIA DE PRODUCAOMétodos de busca local em problemas de escalonamento da produção em ambientes job shopMethods of local search in problems of climbing production in environments job shopinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2551182063231974631600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALMarcos Fernando Machado de Jesus de Santana.pdfMarcos Fernando Machado de Jesus de Santana.pdfapplication/pdf1588561http://localhost:8080/tede/bitstream/tede/1945/2/Marcos+Fernando+Machado+de+Jesus+de+Santana.pdfa0811f14c7afac396441ab2ebf98f5beMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/1945/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/19452021-10-08 18:34:51.234oai:localhost:tede/1945Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-10-08T21:34:51Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
dc.title.alternative.eng.fl_str_mv Methods of local search in problems of climbing production in environments job shop
title Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
spellingShingle Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
Santana, Marcos Fernando Machado de Jesus de
escalonamento
job shop scheduling
metaheurísticos
algoritmo genético
abordagem indireta
scheduling
job shop scheduling
metaheuristics
genetic algorithm
indirect approach
ENGENHARIAS::ENGENHARIA DE PRODUCAO
title_short Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
title_full Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
title_fullStr Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
title_full_unstemmed Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
title_sort Métodos de busca local em problemas de escalonamento da produção em ambientes job shop
author Santana, Marcos Fernando Machado de Jesus de
author_facet Santana, Marcos Fernando Machado de Jesus de
author_role author
dc.contributor.advisor1.fl_str_mv Pereira, Fabio Henrique
dc.contributor.referee1.fl_str_mv Pereira, Fabio Henrique
dc.contributor.referee2.fl_str_mv Tolosa, Thiago Antonio Grandi de
dc.contributor.referee3.fl_str_mv Araújo, Sidnei Alves de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3278877498378740
dc.contributor.author.fl_str_mv Santana, Marcos Fernando Machado de Jesus de
contributor_str_mv Pereira, Fabio Henrique
Pereira, Fabio Henrique
Tolosa, Thiago Antonio Grandi de
Araújo, Sidnei Alves de
dc.subject.por.fl_str_mv escalonamento
job shop scheduling
metaheurísticos
algoritmo genético
abordagem indireta
topic escalonamento
job shop scheduling
metaheurísticos
algoritmo genético
abordagem indireta
scheduling
job shop scheduling
metaheuristics
genetic algorithm
indirect approach
ENGENHARIAS::ENGENHARIA DE PRODUCAO
dc.subject.eng.fl_str_mv scheduling
job shop scheduling
metaheuristics
genetic algorithm
indirect approach
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO
description Solving the problem of production scheduling is an important task in production planning and control. This problem consists, in short, to define a sequence of realization of the production operations for each of the resources (machines) available. This is a complex problem, especially in job shop-type production environments in which each job is defined as a single set of tasks that must be processed in a predefined order and different from that of other jobs. These are the Job Shop Scheduling Problems (JSSP). For smaller problems exact methods have been considered the most indicated because they find the optimal solution in acceptable computational times. For larger problems, which grow in a non-linear way in relation to the number of jobs and machines, heuristic solutions have been more used as a function of computational cost, although they do not guarantee to find the optimal solution. The heuristic and metaheuristic methods have gained prominence in the literature, as is the case of the Genetic Algorithm (GA), which is based on the theory of evolution of the species. However, the genetic algorithm without the application of a local search technique, which is a search in the vicinity of a solution to refine it, does not present satisfactory results for the problem specifically addressed. The objective of this work is to compare different representations in a local search method, together with GA, for the scheduling problem in the job shop environment. For the tests of this work, local search method was evaluated in instances known in the literature. Search methods with defined neighborhoods from direct and indirect representations of the solution in the Genetic Algorithm were compared. The results show that methods with indirect approach defined from indirect representations of the solution are more effective for the problems tested, compared to the direct approach, especially in relation to the computational cost.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-30
dc.date.accessioned.fl_str_mv 2018-12-27T18:29:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Santana, Marcos Fernando Machado de Jesus de. Métodos de busca local em problemas de escalonamento da produção em ambientes job shop. 2017. 78 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/1945
identifier_str_mv Santana, Marcos Fernando Machado de Jesus de. Métodos de busca local em problemas de escalonamento da produção em ambientes job shop. 2017. 78 f. Dissertação( Programa de Mestrado em Engenharia de Produção) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/1945
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 2551182063231974631
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação de Mestrado e Doutorado em Engenharia de Produção
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Engenharia
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/1945/2/Marcos+Fernando+Machado+de+Jesus+de+Santana.pdf
http://localhost:8080/tede/bitstream/tede/1945/1/license.txt
bitstream.checksum.fl_str_mv a0811f14c7afac396441ab2ebf98f5be
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016875755175936