Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da Uninove |
Texto Completo: | http://bibliotecatede.uninove.br/handle/tede/2798 |
Resumo: | Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment. |
id |
NOVE_8b57d110ab4c525e95ad98f323d3894a |
---|---|
oai_identifier_str |
oai:localhost:tede/2798 |
network_acronym_str |
NOVE |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
repository_id_str |
|
spelling |
Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Lopes, Fábio Silvahttp://lattes.cnpq.br/2302666201616083Silveira, Marco Antoniohttp://lattes.cnpq.br/6094742215429382Napolitano, Domingos Marcio Rodrigueshttp://lattes.cnpq.br/0433818215929535Martins, Fellipe Silvahttp://lattes.cnpq.br/7912881403948084http://lattes.cnpq.br/6171685383435848Silva, Andréa Martiniano da2021-12-02T17:44:17Z2020-03-05Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/2798Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment.O absenteísmo é um fenômeno definido como o não comparecimento do empregado ao local de trabalho de forma habitual e com frequência regular; por conseguinte, é o não cumprimento das obrigações, conforme o programado. O presenteísmo, por outro lado, é o fenômeno que indica a presença do empregado, ainda que doente, no local de trabalho, porém, a realização de suas atividades e de suas funções pode ocorrer de modo improdutivo. Neste sentido, dados antropométricos e ergonômicos, que são medidas corporais, mostram-se importantes quando relacionados ao absenteísmo e ao presenteísmo, principalmente em atividades classificadas como trabalho pesado e com um alto índice de atividades repetitivas. A previsão do comportamento de empregados é importante para reduzir perdas para a empresa e melhorar a qualidade de vida no trabalho. Diante deste cenário, técnicas de Mineração de Dados e algumas áreas da Inteligência Artificial podem ser aplicadas na previsão do comportamento do empregado no trabalho. Assim, o objetivo deste estudo foi investigar a aplicação da mineração de dados, em base de dados antropométricos, ergonômicos, absenteístas e presenteístas, para auxiliar a previsão dos comportamentos presenteísta, normal e absenteísta dos empregados no ambiente de trabalho. Os experimentos computacionais foram desenvolvidos em três etapas a fim de prever o comportamento dos empregados – comportamento este que pode ser classificado como presenteísta, normal e absenteísta. Para realização dos experimentos, duas arquiteturas diferentes de redes neurais artificiais foram aplicadas: a Multilayer Perceptron (MLP) e a Radial Basis Function (RBF). Ademais, utilizaram-se também a Random Forest (RF) e o Algoritmo de Otimização por Colônia de Formigas, Ant Colony Optimization (ACO). Para enriquecer o experimento, três bases de dados foram utilizadas. Os dados de absenteísmo e presenteísmo são comuns às três bases de dados e são compostas com 2.403 registros de licenças médicas de 39 empregados coletados durante o período de janeiro de 2008 a dezembro de 2017. Foram considerados 10 atributos na primeira base, 11, na segunda, e 25, na terceira base. Com exceção da primeira base, a segunda e a terceira foram enriquecidas com dados antropométricos e ergonômicos. Os resultados mostraram melhor desempenho após o enriquecimento das bases de dados por meio da MLP e da rede SOM. Em relação aos resultados dos experimentos computacionais na Etapa 1, a MLP obteve a taxa de acerto de 99,91%, a RBF, de 97,08%, a RF, de 99,91%, e o ACO, de 80,65%. Na Etapa 2, a MLP obteve a taxa de acerto de 99,91%, a RBF, de 97,25%, a RF, de 99,91%, e o ACO, de 84,44%. Na Etapa 3, a MLP obteve a taxa de acerto de 99,96%, a RBF, de 96,25%, a RF, de 99,91%, e o ACO, de 91,80%. Em relação ao tempo de processamento e ao desempenho, a RF se destacou como sendo a técnica mais recomendada para auxiliar na previsão dos comportamentos presenteísta, normal e absenteísta, no ambiente de trabalho.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2021-12-02T17:44:17Z No. of bitstreams: 1 ANDRÉA MARTINIANO DA SILVA.pdf: 2768453 bytes, checksum: 3e99e8d229d64ec8ec8464fc409897ce (MD5)Made available in DSpace on 2021-12-02T17:44:17Z (GMT). No. of bitstreams: 1 ANDRÉA MARTINIANO DA SILVA.pdf: 2768453 bytes, checksum: 3e99e8d229d64ec8ec8464fc409897ce (MD5) Previous issue date: 2020-03-05application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticamineração de dadosredes neurais artificiaisantropometriaergonomiaabsenteísmopresenteísmodata miningartificial neural networksanthropometryergonomicsabsenteeismpresenteeismCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOPrevisão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALANDRÉA MARTINIANO DA SILVA.pdfANDRÉA MARTINIANO DA SILVA.pdfapplication/pdf2768453http://localhost:8080/tede/bitstream/tede/2798/2/ANDR%C3%89A+MARTINIANO+DA+SILVA.pdf3e99e8d229d64ec8ec8464fc409897ceMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/2798/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/27982021-12-02 15:44:17.474oai:localhost:tede/2798Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-12-02T17:44:17Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false |
dc.title.por.fl_str_mv |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
title |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
spellingShingle |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas Silva, Andréa Martiniano da mineração de dados redes neurais artificiais antropometria ergonomia absenteísmo presenteísmo data mining artificial neural networks anthropometry ergonomics absenteeism presenteeism CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
title_short |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
title_full |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
title_fullStr |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
title_full_unstemmed |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
title_sort |
Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas |
author |
Silva, Andréa Martiniano da |
author_facet |
Silva, Andréa Martiniano da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Sassi, Renato José |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8750334661789610 |
dc.contributor.referee1.fl_str_mv |
Sassi, Renato José |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/8750334661789610 |
dc.contributor.referee2.fl_str_mv |
Lopes, Fábio Silva |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2302666201616083 |
dc.contributor.referee3.fl_str_mv |
Silveira, Marco Antonio |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/6094742215429382 |
dc.contributor.referee4.fl_str_mv |
Napolitano, Domingos Marcio Rodrigues |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/0433818215929535 |
dc.contributor.referee5.fl_str_mv |
Martins, Fellipe Silva |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/7912881403948084 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6171685383435848 |
dc.contributor.author.fl_str_mv |
Silva, Andréa Martiniano da |
contributor_str_mv |
Sassi, Renato José Sassi, Renato José Lopes, Fábio Silva Silveira, Marco Antonio Napolitano, Domingos Marcio Rodrigues Martins, Fellipe Silva |
dc.subject.por.fl_str_mv |
mineração de dados redes neurais artificiais antropometria ergonomia absenteísmo presenteísmo |
topic |
mineração de dados redes neurais artificiais antropometria ergonomia absenteísmo presenteísmo data mining artificial neural networks anthropometry ergonomics absenteeism presenteeism CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
dc.subject.eng.fl_str_mv |
data mining artificial neural networks anthropometry ergonomics absenteeism presenteeism |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
description |
Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-03-05 |
dc.date.accessioned.fl_str_mv |
2021-12-02T17:44:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
dc.identifier.uri.fl_str_mv |
http://bibliotecatede.uninove.br/handle/tede/2798 |
identifier_str_mv |
Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
url |
http://bibliotecatede.uninove.br/handle/tede/2798 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.cnpq.fl_str_mv |
8930092515683771531 |
dc.relation.confidence.fl_str_mv |
600 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
dc.publisher.initials.fl_str_mv |
UNINOVE |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Informática |
publisher.none.fl_str_mv |
Universidade Nove de Julho |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Uninove instname:Universidade Nove de Julho (UNINOVE) instacron:UNINOVE |
instname_str |
Universidade Nove de Julho (UNINOVE) |
instacron_str |
UNINOVE |
institution |
UNINOVE |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Uninove |
collection |
Biblioteca Digital de Teses e Dissertações da Uninove |
bitstream.url.fl_str_mv |
http://localhost:8080/tede/bitstream/tede/2798/2/ANDR%C3%89A+MARTINIANO+DA+SILVA.pdf http://localhost:8080/tede/bitstream/tede/2798/1/license.txt |
bitstream.checksum.fl_str_mv |
3e99e8d229d64ec8ec8464fc409897ce bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE) |
repository.mail.fl_str_mv |
bibliotecatede@uninove.br||bibliotecatede@uninove.br |
_version_ |
1811016885485961216 |