Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas

Detalhes bibliográficos
Autor(a) principal: Silva, Andréa Martiniano da
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da Uninove
Texto Completo: http://bibliotecatede.uninove.br/handle/tede/2798
Resumo: Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment.
id NOVE_8b57d110ab4c525e95ad98f323d3894a
oai_identifier_str oai:localhost:tede/2798
network_acronym_str NOVE
network_name_str Biblioteca Digital de Teses e Dissertações da Uninove
repository_id_str
spelling Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Sassi, Renato Joséhttp://lattes.cnpq.br/8750334661789610Lopes, Fábio Silvahttp://lattes.cnpq.br/2302666201616083Silveira, Marco Antoniohttp://lattes.cnpq.br/6094742215429382Napolitano, Domingos Marcio Rodrigueshttp://lattes.cnpq.br/0433818215929535Martins, Fellipe Silvahttp://lattes.cnpq.br/7912881403948084http://lattes.cnpq.br/6171685383435848Silva, Andréa Martiniano da2021-12-02T17:44:17Z2020-03-05Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.http://bibliotecatede.uninove.br/handle/tede/2798Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment.O absenteísmo é um fenômeno definido como o não comparecimento do empregado ao local de trabalho de forma habitual e com frequência regular; por conseguinte, é o não cumprimento das obrigações, conforme o programado. O presenteísmo, por outro lado, é o fenômeno que indica a presença do empregado, ainda que doente, no local de trabalho, porém, a realização de suas atividades e de suas funções pode ocorrer de modo improdutivo. Neste sentido, dados antropométricos e ergonômicos, que são medidas corporais, mostram-se importantes quando relacionados ao absenteísmo e ao presenteísmo, principalmente em atividades classificadas como trabalho pesado e com um alto índice de atividades repetitivas. A previsão do comportamento de empregados é importante para reduzir perdas para a empresa e melhorar a qualidade de vida no trabalho. Diante deste cenário, técnicas de Mineração de Dados e algumas áreas da Inteligência Artificial podem ser aplicadas na previsão do comportamento do empregado no trabalho. Assim, o objetivo deste estudo foi investigar a aplicação da mineração de dados, em base de dados antropométricos, ergonômicos, absenteístas e presenteístas, para auxiliar a previsão dos comportamentos presenteísta, normal e absenteísta dos empregados no ambiente de trabalho. Os experimentos computacionais foram desenvolvidos em três etapas a fim de prever o comportamento dos empregados – comportamento este que pode ser classificado como presenteísta, normal e absenteísta. Para realização dos experimentos, duas arquiteturas diferentes de redes neurais artificiais foram aplicadas: a Multilayer Perceptron (MLP) e a Radial Basis Function (RBF). Ademais, utilizaram-se também a Random Forest (RF) e o Algoritmo de Otimização por Colônia de Formigas, Ant Colony Optimization (ACO). Para enriquecer o experimento, três bases de dados foram utilizadas. Os dados de absenteísmo e presenteísmo são comuns às três bases de dados e são compostas com 2.403 registros de licenças médicas de 39 empregados coletados durante o período de janeiro de 2008 a dezembro de 2017. Foram considerados 10 atributos na primeira base, 11, na segunda, e 25, na terceira base. Com exceção da primeira base, a segunda e a terceira foram enriquecidas com dados antropométricos e ergonômicos. Os resultados mostraram melhor desempenho após o enriquecimento das bases de dados por meio da MLP e da rede SOM. Em relação aos resultados dos experimentos computacionais na Etapa 1, a MLP obteve a taxa de acerto de 99,91%, a RBF, de 97,08%, a RF, de 99,91%, e o ACO, de 80,65%. Na Etapa 2, a MLP obteve a taxa de acerto de 99,91%, a RBF, de 97,25%, a RF, de 99,91%, e o ACO, de 84,44%. Na Etapa 3, a MLP obteve a taxa de acerto de 99,96%, a RBF, de 96,25%, a RF, de 99,91%, e o ACO, de 91,80%. Em relação ao tempo de processamento e ao desempenho, a RF se destacou como sendo a técnica mais recomendada para auxiliar na previsão dos comportamentos presenteísta, normal e absenteísta, no ambiente de trabalho.Submitted by Nadir Basilio (nadirsb@uninove.br) on 2021-12-02T17:44:17Z No. of bitstreams: 1 ANDRÉA MARTINIANO DA SILVA.pdf: 2768453 bytes, checksum: 3e99e8d229d64ec8ec8464fc409897ce (MD5)Made available in DSpace on 2021-12-02T17:44:17Z (GMT). No. of bitstreams: 1 ANDRÉA MARTINIANO DA SILVA.pdf: 2768453 bytes, checksum: 3e99e8d229d64ec8ec8464fc409897ce (MD5) Previous issue date: 2020-03-05application/pdfporUniversidade Nove de JulhoPrograma de Pós-Graduação em Informática e Gestão do ConhecimentoUNINOVEBrasilInformáticamineração de dadosredes neurais artificiaisantropometriaergonomiaabsenteísmopresenteísmodata miningartificial neural networksanthropometryergonomicsabsenteeismpresenteeismCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOPrevisão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8930092515683771531600info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da Uninoveinstname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEORIGINALANDRÉA MARTINIANO DA SILVA.pdfANDRÉA MARTINIANO DA SILVA.pdfapplication/pdf2768453http://localhost:8080/tede/bitstream/tede/2798/2/ANDR%C3%89A+MARTINIANO+DA+SILVA.pdf3e99e8d229d64ec8ec8464fc409897ceMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://localhost:8080/tede/bitstream/tede/2798/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/27982021-12-02 15:44:17.474oai:localhost:tede/2798Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://bibliotecatede.uninove.br/PRIhttp://bibliotecatede.uninove.br/oai/requestbibliotecatede@uninove.br||bibliotecatede@uninove.bropendoar:2021-12-02T17:44:17Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)false
dc.title.por.fl_str_mv Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
title Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
spellingShingle Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
Silva, Andréa Martiniano da
mineração de dados
redes neurais artificiais
antropometria
ergonomia
absenteísmo
presenteísmo
data mining
artificial neural networks
anthropometry
ergonomics
absenteeism
presenteeism
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
title_short Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
title_full Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
title_fullStr Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
title_full_unstemmed Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
title_sort Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
author Silva, Andréa Martiniano da
author_facet Silva, Andréa Martiniano da
author_role author
dc.contributor.advisor1.fl_str_mv Sassi, Renato José
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee1.fl_str_mv Sassi, Renato José
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8750334661789610
dc.contributor.referee2.fl_str_mv Lopes, Fábio Silva
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2302666201616083
dc.contributor.referee3.fl_str_mv Silveira, Marco Antonio
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6094742215429382
dc.contributor.referee4.fl_str_mv Napolitano, Domingos Marcio Rodrigues
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/0433818215929535
dc.contributor.referee5.fl_str_mv Martins, Fellipe Silva
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/7912881403948084
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6171685383435848
dc.contributor.author.fl_str_mv Silva, Andréa Martiniano da
contributor_str_mv Sassi, Renato José
Sassi, Renato José
Lopes, Fábio Silva
Silveira, Marco Antonio
Napolitano, Domingos Marcio Rodrigues
Martins, Fellipe Silva
dc.subject.por.fl_str_mv mineração de dados
redes neurais artificiais
antropometria
ergonomia
absenteísmo
presenteísmo
topic mineração de dados
redes neurais artificiais
antropometria
ergonomia
absenteísmo
presenteísmo
data mining
artificial neural networks
anthropometry
ergonomics
absenteeism
presenteeism
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
dc.subject.eng.fl_str_mv data mining
artificial neural networks
anthropometry
ergonomics
absenteeism
presenteeism
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
description Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-05
dc.date.accessioned.fl_str_mv 2021-12-02T17:44:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
dc.identifier.uri.fl_str_mv http://bibliotecatede.uninove.br/handle/tede/2798
identifier_str_mv Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
url http://bibliotecatede.uninove.br/handle/tede/2798
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 8930092515683771531
dc.relation.confidence.fl_str_mv 600
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Informática e Gestão do Conhecimento
dc.publisher.initials.fl_str_mv UNINOVE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Informática
publisher.none.fl_str_mv Universidade Nove de Julho
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da Uninove
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Biblioteca Digital de Teses e Dissertações da Uninove
collection Biblioteca Digital de Teses e Dissertações da Uninove
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/tede/2798/2/ANDR%C3%89A+MARTINIANO+DA+SILVA.pdf
http://localhost:8080/tede/bitstream/tede/2798/1/license.txt
bitstream.checksum.fl_str_mv 3e99e8d229d64ec8ec8464fc409897ce
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da Uninove - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv bibliotecatede@uninove.br||bibliotecatede@uninove.br
_version_ 1811016885485961216