[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Outros |
Idioma: | por |
Título da fonte: | Repositório Institucional da PUC-RIO (Projeto Maxwell) |
Texto Completo: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@2 http://doi.org/10.17771/PUCRio.acad.30285 |
Resumo: | [pt] Sistemas de recomendação aparecem em diversos domínios do mundo real. Vários modelos foram propostos para o problema de predição de entradas faltantes em um conjunto de dados. Duas das abordagens mais comuns são filtragem colaborativa baseada em similaridade e modelos de fatores latentes. Uma alternativa, mais recente, foi proposta por Salakhutdinov em 2007, usando máquinas de Boltzmann restritas, ou RBMs. Esse modelo se encaixa na família de modelos de fatores latentes, no qual, modelamos fatores latentes dos dados usando unidades binárias na camada escondida das RBMs. Esses modelos se mostraram capazes de aproximar resultados obtidos com modelos de fatoração de matrizes. Nesse trabalho vamos revisitar esse modelo e detalhar cuidadosamente como modelar e treinar RBMs para o problema de predição de entradas vazias em dados tabulares. |
id |
PUC_RIO-1_6834271ee766b6dd5725519771c479d5 |
---|---|
oai_identifier_str |
oai:MAXWELL.puc-rio.br:30285 |
network_acronym_str |
PUC_RIO-1 |
network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository_id_str |
534 |
spelling |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES [pt] SISTEMAS DE RECOMENDAÇÃO UTILIZANDO MÁQUINAS DE BOLTZMANN RESTRITAS [pt] APRENDIZADO DE MAQUINA[pt] MAQUINAS DE BOLTZMANN RESTRITAS[pt] SISTEMAS DE RECOMENDACAO[pt] FILTRAGEM COLABORATIVA[en] MACHINE LEARNING[en] RECOMMENDER SYSTEMS[en] COLLABORATIVE FILTERING[pt] Sistemas de recomendação aparecem em diversos domínios do mundo real. Vários modelos foram propostos para o problema de predição de entradas faltantes em um conjunto de dados. Duas das abordagens mais comuns são filtragem colaborativa baseada em similaridade e modelos de fatores latentes. Uma alternativa, mais recente, foi proposta por Salakhutdinov em 2007, usando máquinas de Boltzmann restritas, ou RBMs. Esse modelo se encaixa na família de modelos de fatores latentes, no qual, modelamos fatores latentes dos dados usando unidades binárias na camada escondida das RBMs. Esses modelos se mostraram capazes de aproximar resultados obtidos com modelos de fatoração de matrizes. Nesse trabalho vamos revisitar esse modelo e detalhar cuidadosamente como modelar e treinar RBMs para o problema de predição de entradas vazias em dados tabulares.[en] Recommender systems can be used in many problems in the real world. Many models were proposed to solve the problem of predicting missing entries in a specific dataset. Two of the most common approaches are neighborhood-based collaborative filtering and latent factor models. A more recent alternative was proposed on 2007 by Salakhutdinov, using Restricted Boltzmann Machines. This models belongs to the family of latent factor models, in which, we model latent factors over the data using hidden binary units. RBMs have shown that they can approximate solutions trained with a traditional matrix factorization model. In this work we ll revisit this proposed model and carefully detail how to model and train RBMs for the problem of missing ratings prediction.MAXWELLRUY LUIZ MILIDIUFELIPE JOAO PONTES DA CRUZ2017-06-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@2http://doi.org/10.17771/PUCRio.acad.30285porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2017-09-14T00:00:00Zoai:MAXWELL.puc-rio.br:30285Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342017-09-14T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false |
dc.title.none.fl_str_mv |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES [pt] SISTEMAS DE RECOMENDAÇÃO UTILIZANDO MÁQUINAS DE BOLTZMANN RESTRITAS |
title |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES |
spellingShingle |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES FELIPE JOAO PONTES DA CRUZ [pt] APRENDIZADO DE MAQUINA [pt] MAQUINAS DE BOLTZMANN RESTRITAS [pt] SISTEMAS DE RECOMENDACAO [pt] FILTRAGEM COLABORATIVA [en] MACHINE LEARNING [en] RECOMMENDER SYSTEMS [en] COLLABORATIVE FILTERING |
title_short |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES |
title_full |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES |
title_fullStr |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES |
title_full_unstemmed |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES |
title_sort |
[en] RECOMMENDER SYSTEMS USING RESTRICTED BOLTZMANN MACHINES |
author |
FELIPE JOAO PONTES DA CRUZ |
author_facet |
FELIPE JOAO PONTES DA CRUZ |
author_role |
author |
dc.contributor.none.fl_str_mv |
RUY LUIZ MILIDIU |
dc.contributor.author.fl_str_mv |
FELIPE JOAO PONTES DA CRUZ |
dc.subject.por.fl_str_mv |
[pt] APRENDIZADO DE MAQUINA [pt] MAQUINAS DE BOLTZMANN RESTRITAS [pt] SISTEMAS DE RECOMENDACAO [pt] FILTRAGEM COLABORATIVA [en] MACHINE LEARNING [en] RECOMMENDER SYSTEMS [en] COLLABORATIVE FILTERING |
topic |
[pt] APRENDIZADO DE MAQUINA [pt] MAQUINAS DE BOLTZMANN RESTRITAS [pt] SISTEMAS DE RECOMENDACAO [pt] FILTRAGEM COLABORATIVA [en] MACHINE LEARNING [en] RECOMMENDER SYSTEMS [en] COLLABORATIVE FILTERING |
description |
[pt] Sistemas de recomendação aparecem em diversos domínios do mundo real. Vários modelos foram propostos para o problema de predição de entradas faltantes em um conjunto de dados. Duas das abordagens mais comuns são filtragem colaborativa baseada em similaridade e modelos de fatores latentes. Uma alternativa, mais recente, foi proposta por Salakhutdinov em 2007, usando máquinas de Boltzmann restritas, ou RBMs. Esse modelo se encaixa na família de modelos de fatores latentes, no qual, modelamos fatores latentes dos dados usando unidades binárias na camada escondida das RBMs. Esses modelos se mostraram capazes de aproximar resultados obtidos com modelos de fatoração de matrizes. Nesse trabalho vamos revisitar esse modelo e detalhar cuidadosamente como modelar e treinar RBMs para o problema de predição de entradas vazias em dados tabulares. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@2 http://doi.org/10.17771/PUCRio.acad.30285 |
url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30285@2 http://doi.org/10.17771/PUCRio.acad.30285 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MAXWELL |
publisher.none.fl_str_mv |
MAXWELL |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
instacron_str |
PUC_RIO |
institution |
PUC_RIO |
reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository.name.fl_str_mv |
Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
repository.mail.fl_str_mv |
|
_version_ |
1814822601742090240 |