[pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO

Detalhes bibliográficos
Autor(a) principal: LEONARDO ALFREDO FORERO MENDOZA
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=2
http://doi.org/10.17771/PUCRio.acad.35557
Resumo: [pt] Esta tese consiste na investigação e no desenvolvimento de estratégias de coordenação inteligente que possam ser integradas a modelos neuro-fuzzy hierárquicos para sistemas de múltiplos agentes em ambientes complexos. Em ambientes dinâmicos ou complexos a organização dos agentes deve se adaptar a mudanças nos objetivos do sistema, na disponibilidade de recursos, nos relacionamentos entre os agentes, e assim por diante. Esta flexibilidade é um problema chave nos sistemas multiagente. O objetivo principal dos modelos propostos é fazer com que múltiplos agentes interajam de forma inteligente entre si em sistemas complexos. Neste trabalho foram desenvolvidos dois novos modelos inteligentes neuro-fuzzy hierárquicos com mecanismo de coordenação para sistemas multiagentes, a saber: modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com mecanismo de coordenação Market-Driven (RL-NFHP-MA-MD); e o Modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com modelo de coordenação por grafos (RL-NFHP-MA-CG). A inclusão de modelos de coordenação ao modelo Neuro-Fuzzy Hierárquicos com Aprendizado por Reforço (RL-NHFP-MA) foi motivada principalmente pela importância de otimizar o desempenho do trabalho em conjunto dos agentes, melhorando os resultados do modelo e visando aplicações mais complexas. Os modelos foram concebidos a partir do estudo das limitações existentes nos modelos atuais e das características desejáveis para sistemas de aprendizado baseados em RL, em particular quando aplicados a ambientes contínuos e/ou ambientes considerados de grande dimensão. Os modelos desenvolvidos foram testados através de basicamente dois estudos de caso: a aplicação benchmark do jogo da presa-predador (Pursuit- Game) e Futebol de robôs (simulado e com agentes robóticos). Os resultados obtidos tanto no jogo da presa-predador quanto no futebol de robô através dos novos modelos RL-NFHP-MA-MD e RL-NFHP-MA-CG para múltiplos agentes se mostraram bastante promissores. Os testes demonstraram que o novo sistema mostrou capacidade de coordenar as ações entre agentes com uma velocidade de convergência quase 30 por cento maior que a versão original. Os resultados de futebol de robô foram obtidos com o modelo RL-NFHP-MA-MD e o modelo RL-NFHP-MA-CG, os resultados são bons em jogos completos como em jogadas específicas, ganhando de times desenvolvidos com outros modelos similares.
id PUC_RIO-1_7bc8fe475b1ec7593900319813916039
oai_identifier_str oai:MAXWELL.puc-rio.br:35557
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO [en] INTELLIGENT COORDINATION FOR MULTIAGENT BASED MODELS HIERARCHICAL NEURO-FUZZY WITH REINFORCEMENT LEARNING [pt] APRENDIZADO POR REFORCO[pt] COORDENACAO MULTIAGENTE[pt] NEURO-FUZZY[en] REINFORCEMENT LEARNING[en] MULTIAGENT COORDINATION[en] NEURO-FUZZY[pt] Esta tese consiste na investigação e no desenvolvimento de estratégias de coordenação inteligente que possam ser integradas a modelos neuro-fuzzy hierárquicos para sistemas de múltiplos agentes em ambientes complexos. Em ambientes dinâmicos ou complexos a organização dos agentes deve se adaptar a mudanças nos objetivos do sistema, na disponibilidade de recursos, nos relacionamentos entre os agentes, e assim por diante. Esta flexibilidade é um problema chave nos sistemas multiagente. O objetivo principal dos modelos propostos é fazer com que múltiplos agentes interajam de forma inteligente entre si em sistemas complexos. Neste trabalho foram desenvolvidos dois novos modelos inteligentes neuro-fuzzy hierárquicos com mecanismo de coordenação para sistemas multiagentes, a saber: modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com mecanismo de coordenação Market-Driven (RL-NFHP-MA-MD); e o Modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com modelo de coordenação por grafos (RL-NFHP-MA-CG). A inclusão de modelos de coordenação ao modelo Neuro-Fuzzy Hierárquicos com Aprendizado por Reforço (RL-NHFP-MA) foi motivada principalmente pela importância de otimizar o desempenho do trabalho em conjunto dos agentes, melhorando os resultados do modelo e visando aplicações mais complexas. Os modelos foram concebidos a partir do estudo das limitações existentes nos modelos atuais e das características desejáveis para sistemas de aprendizado baseados em RL, em particular quando aplicados a ambientes contínuos e/ou ambientes considerados de grande dimensão. Os modelos desenvolvidos foram testados através de basicamente dois estudos de caso: a aplicação benchmark do jogo da presa-predador (Pursuit- Game) e Futebol de robôs (simulado e com agentes robóticos). Os resultados obtidos tanto no jogo da presa-predador quanto no futebol de robô através dos novos modelos RL-NFHP-MA-MD e RL-NFHP-MA-CG para múltiplos agentes se mostraram bastante promissores. Os testes demonstraram que o novo sistema mostrou capacidade de coordenar as ações entre agentes com uma velocidade de convergência quase 30 por cento maior que a versão original. Os resultados de futebol de robô foram obtidos com o modelo RL-NFHP-MA-MD e o modelo RL-NFHP-MA-CG, os resultados são bons em jogos completos como em jogadas específicas, ganhando de times desenvolvidos com outros modelos similares.[en] This thesis is the research and development of intelligent coordination strategies that can be integrated into models for hierarchical neuro-fuzzy systems of multiple agents in complex environments. In dynamic environments or complex organization of agents must adapt to changes in the objectives of the system, availability of resources, relationships between agents, and so on. This flexibility is a key problem in multiagent systems. The main objective of the proposed models is to make multiple agents interact intelligently with each other in complex systems. In this work we developed two new intelligent neuro-fuzzy models with hierarchical coordination mechanism for multi-agent systems, namely Neuro-Fuzzy Model with Hierarchical Reinforcement Learning with coordination mechanism Market-Driven (RL-NFHP-MA-MD), and Neuro-Fuzzy model with Hierarchical Reinforcement Learning with coordination model for graphs (RL-NFHP-MA-CG). The inclusion of coordination models to model with Neuro-Fuzzy Hierarchical Reinforcement Learning (RL-NHFP-MA) was primarily motivated by the importance of optimizing the performance of the work in all players, improving the model results and targeting more complex applications. The models were designed based on the study of existing limitations in current models and desirable features for learning systems based RL, in particular when applied to continuous environments and/or environments considered large. The developed models were tested primarily through two case studies: application benchmark game of predator-prey ( Pursuit-Game) and Soccer robots (simulated and robotic agents). The results obtained both in the game of predator-prey as in soccer robot through new models RL-NFHP-MA-MD and RL-NFHP-MA-CG for multiple agents proved promising. The tests showed that the new system showed ability to coordinate actions among agents with a convergence rate nearly 30 percent higher than the original version. Results soccer robot were obtained with model RL-NFHP-MA-MD–NFHP-RL and model-CG-MA, the results are good in games played in full as specific winning teams developed with other similar models.MAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCOLEONARDO ALFREDO FORERO MENDOZA2018-11-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=2http://doi.org/10.17771/PUCRio.acad.35557porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2021-03-23T00:00:00Zoai:MAXWELL.puc-rio.br:35557Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342021-03-23T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
[en] INTELLIGENT COORDINATION FOR MULTIAGENT BASED MODELS HIERARCHICAL NEURO-FUZZY WITH REINFORCEMENT LEARNING
title [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
spellingShingle [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
LEONARDO ALFREDO FORERO MENDOZA
[pt] APRENDIZADO POR REFORCO
[pt] COORDENACAO MULTIAGENTE
[pt] NEURO-FUZZY
[en] REINFORCEMENT LEARNING
[en] MULTIAGENT COORDINATION
[en] NEURO-FUZZY
title_short [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
title_full [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
title_fullStr [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
title_full_unstemmed [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
title_sort [pt] COORDENAÇÃO INTELIGENTE PARA MULTIAGENTES BASEADOS EM MODELOS NEURO-FUZZY HIERÁRQUICOS COM APRENDIZADO POR REFORÇO
author LEONARDO ALFREDO FORERO MENDOZA
author_facet LEONARDO ALFREDO FORERO MENDOZA
author_role author
dc.contributor.none.fl_str_mv MARLEY MARIA BERNARDES REBUZZI VELLASCO
MARLEY MARIA BERNARDES REBUZZI VELLASCO
dc.contributor.author.fl_str_mv LEONARDO ALFREDO FORERO MENDOZA
dc.subject.por.fl_str_mv [pt] APRENDIZADO POR REFORCO
[pt] COORDENACAO MULTIAGENTE
[pt] NEURO-FUZZY
[en] REINFORCEMENT LEARNING
[en] MULTIAGENT COORDINATION
[en] NEURO-FUZZY
topic [pt] APRENDIZADO POR REFORCO
[pt] COORDENACAO MULTIAGENTE
[pt] NEURO-FUZZY
[en] REINFORCEMENT LEARNING
[en] MULTIAGENT COORDINATION
[en] NEURO-FUZZY
description [pt] Esta tese consiste na investigação e no desenvolvimento de estratégias de coordenação inteligente que possam ser integradas a modelos neuro-fuzzy hierárquicos para sistemas de múltiplos agentes em ambientes complexos. Em ambientes dinâmicos ou complexos a organização dos agentes deve se adaptar a mudanças nos objetivos do sistema, na disponibilidade de recursos, nos relacionamentos entre os agentes, e assim por diante. Esta flexibilidade é um problema chave nos sistemas multiagente. O objetivo principal dos modelos propostos é fazer com que múltiplos agentes interajam de forma inteligente entre si em sistemas complexos. Neste trabalho foram desenvolvidos dois novos modelos inteligentes neuro-fuzzy hierárquicos com mecanismo de coordenação para sistemas multiagentes, a saber: modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com mecanismo de coordenação Market-Driven (RL-NFHP-MA-MD); e o Modelo Neuro-Fuzzy Hierárquico com Aprendizado por Reforço com modelo de coordenação por grafos (RL-NFHP-MA-CG). A inclusão de modelos de coordenação ao modelo Neuro-Fuzzy Hierárquicos com Aprendizado por Reforço (RL-NHFP-MA) foi motivada principalmente pela importância de otimizar o desempenho do trabalho em conjunto dos agentes, melhorando os resultados do modelo e visando aplicações mais complexas. Os modelos foram concebidos a partir do estudo das limitações existentes nos modelos atuais e das características desejáveis para sistemas de aprendizado baseados em RL, em particular quando aplicados a ambientes contínuos e/ou ambientes considerados de grande dimensão. Os modelos desenvolvidos foram testados através de basicamente dois estudos de caso: a aplicação benchmark do jogo da presa-predador (Pursuit- Game) e Futebol de robôs (simulado e com agentes robóticos). Os resultados obtidos tanto no jogo da presa-predador quanto no futebol de robô através dos novos modelos RL-NFHP-MA-MD e RL-NFHP-MA-CG para múltiplos agentes se mostraram bastante promissores. Os testes demonstraram que o novo sistema mostrou capacidade de coordenar as ações entre agentes com uma velocidade de convergência quase 30 por cento maior que a versão original. Os resultados de futebol de robô foram obtidos com o modelo RL-NFHP-MA-MD e o modelo RL-NFHP-MA-CG, os resultados são bons em jogos completos como em jogadas específicas, ganhando de times desenvolvidos com outros modelos similares.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=2
http://doi.org/10.17771/PUCRio.acad.35557
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35557&idi=2
http://doi.org/10.17771/PUCRio.acad.35557
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1817789482666033152