[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Outros |
Idioma: | eng |
Título da fonte: | Repositório Institucional da PUC-RIO (Projeto Maxwell) |
Texto Completo: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@2 http://doi.org/10.17771/PUCRio.acad.47988 |
Resumo: | [pt] A previsão de movimentos futuros para o mercado de ações é conhecidamente uma tarefa difícil de ser satisfatoriamente realizada. Além disso, a própria possibilidade desta previsão é constantemente questionada na literatura. O estudo presente investiga se essa dificuldade poderia ser amenizada escolhendo janelas específicas de tempo, onde uma dinâmica mais evidente prevaleça, e se a identificação desses períodos pode ser aprendida através de dados passados. Um framework é proposto para tratar desses problemas. Esse framework é nomeado de Predictability Crawler (P-Craw). A proposta usa rotinas de otimização como o Particle Swarm Optimization (PSO) e Algorítimos Genéticos (GA) para selecionar sub-conjuntos de dados históricos onde modelos de aprendizado estatístico possam ser treinados de forma mais eficiente. Para validar a acurácia do método, este é testado em dois diferentes conjuntos de dados. Primeiro, simulações com diferentes níveis de ruído são geradas. Nelas, o P-Craw é capaz de identificar os subconjuntos ótimos em cenários com 20 por cento a 100 por cento de amostras previsíveis. Por fim, dados de transações intradiárias da bolsa de valores brasileira (BOVESPA) são agregados e processados uma matrix de variáveis de entrada e um vetor de previsões. Quando o P-Craw é testado contra o método usual de treinar os modelos em todo conjunto histórico disponível nos dados da BOVESPA, o framework é capaz de aumentar significativamente o número de vezes que o modelo acerta a direção do movimento do preço das ações, enquanto consegue chegar a reduzir em até 19 por cento o erro médio absoluto da tarefa. |
id |
PUC_RIO-1_b248457e7f1adb53b0131b66b40169e8 |
---|---|
oai_identifier_str |
oai:MAXWELL.puc-rio.br:47988 |
network_acronym_str |
PUC_RIO-1 |
network_name_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository_id_str |
534 |
spelling |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES [en] INVESTIGATING OPTIMAL REGIMES FOR PREDICTION IN THE STOCK MARKET [pt] SERIE TEMPORAL[pt] ALGORITIMOS GENETICOS[pt] PSO[pt] PREVISIBILIDADE[pt] MERCADO DE ACOES[en] TIME SERIE[en] GENETIC ALGORITHMS[en] PSO[en] PREVISIBILITY[en] ACTIONS MARKET[pt] A previsão de movimentos futuros para o mercado de ações é conhecidamente uma tarefa difícil de ser satisfatoriamente realizada. Além disso, a própria possibilidade desta previsão é constantemente questionada na literatura. O estudo presente investiga se essa dificuldade poderia ser amenizada escolhendo janelas específicas de tempo, onde uma dinâmica mais evidente prevaleça, e se a identificação desses períodos pode ser aprendida através de dados passados. Um framework é proposto para tratar desses problemas. Esse framework é nomeado de Predictability Crawler (P-Craw). A proposta usa rotinas de otimização como o Particle Swarm Optimization (PSO) e Algorítimos Genéticos (GA) para selecionar sub-conjuntos de dados históricos onde modelos de aprendizado estatístico possam ser treinados de forma mais eficiente. Para validar a acurácia do método, este é testado em dois diferentes conjuntos de dados. Primeiro, simulações com diferentes níveis de ruído são geradas. Nelas, o P-Craw é capaz de identificar os subconjuntos ótimos em cenários com 20 por cento a 100 por cento de amostras previsíveis. Por fim, dados de transações intradiárias da bolsa de valores brasileira (BOVESPA) são agregados e processados uma matrix de variáveis de entrada e um vetor de previsões. Quando o P-Craw é testado contra o método usual de treinar os modelos em todo conjunto histórico disponível nos dados da BOVESPA, o framework é capaz de aumentar significativamente o número de vezes que o modelo acerta a direção do movimento do preço das ações, enquanto consegue chegar a reduzir em até 19 por cento o erro médio absoluto da tarefa.[en] Predicting stock movements in the market its known to be an extremely difficult task. More than that, the predictability of the series itself is a controversial matter. The present study investigates if this difficulty could be alleviated by choosing specific windows of time where a more structured dynamic prevails, and whether the identification of those moments could be learned from past data. In order to do that, a novel framework is proposed. This framework is called the Predictability Crawler (P-Craw). It uses optimizations routines such as the Particle Swarm Optimization (PSO) or Genetic Algorithms (GA) to select subsets of historical data where statistical learning algorithms can be more efficiently trained. To access the accuracy of the method, it is tested against two different datasets. First, simulated data with varying percentage of noise is generated and used. In the simulations, The P-Craw is able to reliably identify the optimal subsets in scenarios ranging from 20 percent to 100 percent of predictable samples in the data. Second, intraday data from the Brazilian stocks exchange (BOVESPA) is collected and aggregated into feature and target matrices. When benchmarked against training with the whole samples in the BOVESPA data, the framework is able to significantly raise the correct directional changes of the trained models while reducing the Mean Absolute Error in up to 19 percent.MAXWELLMARLEY MARIA BERNARDES REBUZZI VELLASCOMARLEY MARIA BERNARDES REBUZZI VELLASCORODRIGO CANTO CORBELLI2020-05-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@2http://doi.org/10.17771/PUCRio.acad.47988engreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-07-28T00:00:00Zoai:MAXWELL.puc-rio.br:47988Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342022-07-28T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false |
dc.title.none.fl_str_mv |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES [en] INVESTIGATING OPTIMAL REGIMES FOR PREDICTION IN THE STOCK MARKET |
title |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES |
spellingShingle |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES RODRIGO CANTO CORBELLI [pt] SERIE TEMPORAL [pt] ALGORITIMOS GENETICOS [pt] PSO [pt] PREVISIBILIDADE [pt] MERCADO DE ACOES [en] TIME SERIE [en] GENETIC ALGORITHMS [en] PSO [en] PREVISIBILITY [en] ACTIONS MARKET |
title_short |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES |
title_full |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES |
title_fullStr |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES |
title_full_unstemmed |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES |
title_sort |
[pt] INVESTIGANDO REGIMES ÓTIMOS PARA PREVISÃO NO MERCADO DE AÇÕES |
author |
RODRIGO CANTO CORBELLI |
author_facet |
RODRIGO CANTO CORBELLI |
author_role |
author |
dc.contributor.none.fl_str_mv |
MARLEY MARIA BERNARDES REBUZZI VELLASCO MARLEY MARIA BERNARDES REBUZZI VELLASCO |
dc.contributor.author.fl_str_mv |
RODRIGO CANTO CORBELLI |
dc.subject.por.fl_str_mv |
[pt] SERIE TEMPORAL [pt] ALGORITIMOS GENETICOS [pt] PSO [pt] PREVISIBILIDADE [pt] MERCADO DE ACOES [en] TIME SERIE [en] GENETIC ALGORITHMS [en] PSO [en] PREVISIBILITY [en] ACTIONS MARKET |
topic |
[pt] SERIE TEMPORAL [pt] ALGORITIMOS GENETICOS [pt] PSO [pt] PREVISIBILIDADE [pt] MERCADO DE ACOES [en] TIME SERIE [en] GENETIC ALGORITHMS [en] PSO [en] PREVISIBILITY [en] ACTIONS MARKET |
description |
[pt] A previsão de movimentos futuros para o mercado de ações é conhecidamente uma tarefa difícil de ser satisfatoriamente realizada. Além disso, a própria possibilidade desta previsão é constantemente questionada na literatura. O estudo presente investiga se essa dificuldade poderia ser amenizada escolhendo janelas específicas de tempo, onde uma dinâmica mais evidente prevaleça, e se a identificação desses períodos pode ser aprendida através de dados passados. Um framework é proposto para tratar desses problemas. Esse framework é nomeado de Predictability Crawler (P-Craw). A proposta usa rotinas de otimização como o Particle Swarm Optimization (PSO) e Algorítimos Genéticos (GA) para selecionar sub-conjuntos de dados históricos onde modelos de aprendizado estatístico possam ser treinados de forma mais eficiente. Para validar a acurácia do método, este é testado em dois diferentes conjuntos de dados. Primeiro, simulações com diferentes níveis de ruído são geradas. Nelas, o P-Craw é capaz de identificar os subconjuntos ótimos em cenários com 20 por cento a 100 por cento de amostras previsíveis. Por fim, dados de transações intradiárias da bolsa de valores brasileira (BOVESPA) são agregados e processados uma matrix de variáveis de entrada e um vetor de previsões. Quando o P-Craw é testado contra o método usual de treinar os modelos em todo conjunto histórico disponível nos dados da BOVESPA, o framework é capaz de aumentar significativamente o número de vezes que o modelo acerta a direção do movimento do preço das ações, enquanto consegue chegar a reduzir em até 19 por cento o erro médio absoluto da tarefa. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@2 http://doi.org/10.17771/PUCRio.acad.47988 |
url |
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47988@2 http://doi.org/10.17771/PUCRio.acad.47988 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MAXWELL |
publisher.none.fl_str_mv |
MAXWELL |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell) instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) instacron:PUC_RIO |
instname_str |
Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
instacron_str |
PUC_RIO |
institution |
PUC_RIO |
reponame_str |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
collection |
Repositório Institucional da PUC-RIO (Projeto Maxwell) |
repository.name.fl_str_mv |
Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO) |
repository.mail.fl_str_mv |
|
_version_ |
1814822620870213632 |