ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION

Detalhes bibliográficos
Autor(a) principal: RAUL PIERRE RENTERIA
Data de Publicação: 2003
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@2
Resumo: Muitos problemas da área de aprendizagem automática tem por objetivo modelar a complexa relação existente num sisitema , entre variáveis de entrada X e de saída Y na ausência de um modelo teórico. A regressão por mínimos quadrados parciais PLS ( Partial Least Squares) constitui um método linear para resolução deste tipo de problema , voltado para o caso de um grande número de variáveis de entrada quando comparado com número de amostras. Nesta tese , apresentamos uma variante do algoritmo clássico PLS para o tratamento de grandes conjuntos de dados , mantendo um bom poder preditivo. Dentre os principais resultados destacamos um versão paralela PPLS (Parallel PLS ) exata para o caso de apenas um variável de saída e um versão rápida e aproximada DPLS (DIRECT PLS) para o caso de mais de uma variável de saída. Por outro lado ,apresentamos também variantes para o aumento da qualidade de predição graças à formulação não linear. São elas o LPLS ( Lifted PLS ), algoritmo para o caso de apenas uma variável de saída, baseado na teoria de funções de núcleo ( kernel functions ), uma formulação kernel para o DPLS e um algoritmo multi-kernel MKPLS capaz de uma modelagemmais compacta e maior poder preditivo, graças ao uso de vários núcleos na geração do modelo.
id PUC_RIO-1_bd77a633f928ac120b74c5fbf649aca4
oai_identifier_str oai:MAXWELL.puc-rio.br:4362
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION ALGORITMOS PARA REGRESSÃO POR MÍNIMOS QUADRADOS PARCIAIS 2003-03-19RUY LUIZ MILIDIU12249475091lattes.cnpq.br/6918010504362643CARLOS EDUARDO PEDREIRAEDUARDO SANY LABERRUY LUIZ MILIDIUCARLOS JOSE PEREIRA DE LUCENACARLOS JOSE PEREIRA DE LUCENARAUL PIERRE RENTERIAPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPPG EM INFORMÁTICAPUC-RioBRMuitos problemas da área de aprendizagem automática tem por objetivo modelar a complexa relação existente num sisitema , entre variáveis de entrada X e de saída Y na ausência de um modelo teórico. A regressão por mínimos quadrados parciais PLS ( Partial Least Squares) constitui um método linear para resolução deste tipo de problema , voltado para o caso de um grande número de variáveis de entrada quando comparado com número de amostras. Nesta tese , apresentamos uma variante do algoritmo clássico PLS para o tratamento de grandes conjuntos de dados , mantendo um bom poder preditivo. Dentre os principais resultados destacamos um versão paralela PPLS (Parallel PLS ) exata para o caso de apenas um variável de saída e um versão rápida e aproximada DPLS (DIRECT PLS) para o caso de mais de uma variável de saída. Por outro lado ,apresentamos também variantes para o aumento da qualidade de predição graças à formulação não linear. São elas o LPLS ( Lifted PLS ), algoritmo para o caso de apenas uma variável de saída, baseado na teoria de funções de núcleo ( kernel functions ), uma formulação kernel para o DPLS e um algoritmo multi-kernel MKPLS capaz de uma modelagemmais compacta e maior poder preditivo, graças ao uso de vários núcleos na geração do modelo.The purpose of many problems in the machine learning field isto model the complex relationship in a system between the input X and output Y variables when no theoretical model is available. The Partial Least Squares (PLS)is one linear method for this kind of problem, for the case of many input variables when compared to the number of samples. In this thesis we present versions of the classical PLS algorithm designed for large data sets while keeping a good predictive power. Among the main results we highlight PPLS (Parallel PLS), a parallel version for the case of only one output variable, and DPLS ( Direct PLS), a fast and approximate version, for the case fo more than one output variable. On the other hand, we also present some variants of the regression algorithm that can enhance the predictive quality based on a non -linear formulation. We indroduce LPLS (Lifted PLS), for the case of only one dependent variable based on the theory of kernel functions, KDPLS, a non-linear formulation for DPLS, and MKPLS, a multi-kernel algorithm that can result in a more compact model and a better prediction quality, thankas to the use of several kernels for the model bulding.CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@2porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2022-11-01T12:37:24Zoai:MAXWELL.puc-rio.br:4362Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342019-09-06T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.en.fl_str_mv ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
dc.title.alternative.pt.fl_str_mv ALGORITMOS PARA REGRESSÃO POR MÍNIMOS QUADRADOS PARCIAIS
title ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
spellingShingle ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
RAUL PIERRE RENTERIA
title_short ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
title_full ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
title_fullStr ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
title_full_unstemmed ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
title_sort ALGORITHMS FOR PARTIAL LEAST SQUARES REGRESSION
dc.creator.ID.none.fl_str_mv
dc.creator.Lattes.none.fl_str_mv
author RAUL PIERRE RENTERIA
author_facet RAUL PIERRE RENTERIA
author_role author
dc.contributor.advisor1.fl_str_mv RUY LUIZ MILIDIU
dc.contributor.advisor1ID.fl_str_mv 12249475091
dc.contributor.advisor1Lattes.fl_str_mv lattes.cnpq.br/6918010504362643
dc.contributor.referee1.fl_str_mv CARLOS EDUARDO PEDREIRA
dc.contributor.referee2.fl_str_mv EDUARDO SANY LABER
dc.contributor.referee3.fl_str_mv RUY LUIZ MILIDIU
dc.contributor.referee4.fl_str_mv CARLOS JOSE PEREIRA DE LUCENA
dc.contributor.referee5.fl_str_mv CARLOS JOSE PEREIRA DE LUCENA
dc.contributor.author.fl_str_mv RAUL PIERRE RENTERIA
contributor_str_mv RUY LUIZ MILIDIU
CARLOS EDUARDO PEDREIRA
EDUARDO SANY LABER
RUY LUIZ MILIDIU
CARLOS JOSE PEREIRA DE LUCENA
CARLOS JOSE PEREIRA DE LUCENA
description Muitos problemas da área de aprendizagem automática tem por objetivo modelar a complexa relação existente num sisitema , entre variáveis de entrada X e de saída Y na ausência de um modelo teórico. A regressão por mínimos quadrados parciais PLS ( Partial Least Squares) constitui um método linear para resolução deste tipo de problema , voltado para o caso de um grande número de variáveis de entrada quando comparado com número de amostras. Nesta tese , apresentamos uma variante do algoritmo clássico PLS para o tratamento de grandes conjuntos de dados , mantendo um bom poder preditivo. Dentre os principais resultados destacamos um versão paralela PPLS (Parallel PLS ) exata para o caso de apenas um variável de saída e um versão rápida e aproximada DPLS (DIRECT PLS) para o caso de mais de uma variável de saída. Por outro lado ,apresentamos também variantes para o aumento da qualidade de predição graças à formulação não linear. São elas o LPLS ( Lifted PLS ), algoritmo para o caso de apenas uma variável de saída, baseado na teoria de funções de núcleo ( kernel functions ), uma formulação kernel para o DPLS e um algoritmo multi-kernel MKPLS capaz de uma modelagemmais compacta e maior poder preditivo, graças ao uso de vários núcleos na geração do modelo.
publishDate 2003
dc.date.issued.fl_str_mv 2003-03-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@2
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@2
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
dc.publisher.program.fl_str_mv PPG EM INFORMÁTICA
dc.publisher.initials.fl_str_mv PUC-Rio
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1748324878075822080