Modeling indices using partial least squares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/145169 |
Resumo: | Di̇rsehan, T., & Henseler, J. (2023). Modeling indices using partial least squares: How to determine the optimum weights? Quality & Quantity, 57(4 Advanced PLS-PM Applications in Social Sciences), 521-535. https://doi.org/10.1007/s11135-022-01515-5 ---- Funding: Jörg Henseler gratefully acknowledges financial support from FCT Fundação para a Ciência e a Tecnologia (Portugal), national funding through a research grant from the Information Management Research Center – MagIC/NOVA IMS (UIDB/04152/2020). |
id |
RCAP_98c2667777b4cc44632ea4b16d9100b2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145169 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modeling indices using partial least squaresHow to determine the optimum weights?PLS Mode APLS Mode BPartial least squares path modelingComposite measurementIndicesWeighting schemesStatistics and ProbabilitySocial Sciences(all)SDG 8 - Decent Work and Economic GrowthSDG 10 - Reduced InequalitiesDi̇rsehan, T., & Henseler, J. (2023). Modeling indices using partial least squares: How to determine the optimum weights? Quality & Quantity, 57(4 Advanced PLS-PM Applications in Social Sciences), 521-535. https://doi.org/10.1007/s11135-022-01515-5 ---- Funding: Jörg Henseler gratefully acknowledges financial support from FCT Fundação para a Ciência e a Tecnologia (Portugal), national funding through a research grant from the Information Management Research Center – MagIC/NOVA IMS (UIDB/04152/2020).Indices are often used to model theoretical concepts in economics and finance. Beyond the econometric models used to test the relationships between these variables, partial least squares path modeling (PLS-PM) allows the study of complex models, but it is an estimator that is still in its infancy in economics and finance research. Thus, the use of PLS-PM for composite analysis needs to be explored further. As one such attempt, this paper is focused on the determination of the indices’ optimum weights. For this purpose, the effects of the market potential index (MPI) on foreign direct investment (FDI) and gross domestic product (GDP) were analysed by implementing different weighting schemes. The assessment of the model shows that PLS Mode B leads to better model fit.Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNDi̇rsehan, TaşkınHenseler, Jörg2022-11-02T22:11:05Z2023-12-012023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://hdl.handle.net/10362/145169eng0033-5177PURE: 47525364https://doi.org/10.1007/s11135-022-01515-5info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:25:18Zoai:run.unl.pt:10362/145169Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:51:56.131978Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modeling indices using partial least squares How to determine the optimum weights? |
title |
Modeling indices using partial least squares |
spellingShingle |
Modeling indices using partial least squares Di̇rsehan, Taşkın PLS Mode A PLS Mode B Partial least squares path modeling Composite measurement Indices Weighting schemes Statistics and Probability Social Sciences(all) SDG 8 - Decent Work and Economic Growth SDG 10 - Reduced Inequalities |
title_short |
Modeling indices using partial least squares |
title_full |
Modeling indices using partial least squares |
title_fullStr |
Modeling indices using partial least squares |
title_full_unstemmed |
Modeling indices using partial least squares |
title_sort |
Modeling indices using partial least squares |
author |
Di̇rsehan, Taşkın |
author_facet |
Di̇rsehan, Taşkın Henseler, Jörg |
author_role |
author |
author2 |
Henseler, Jörg |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Di̇rsehan, Taşkın Henseler, Jörg |
dc.subject.por.fl_str_mv |
PLS Mode A PLS Mode B Partial least squares path modeling Composite measurement Indices Weighting schemes Statistics and Probability Social Sciences(all) SDG 8 - Decent Work and Economic Growth SDG 10 - Reduced Inequalities |
topic |
PLS Mode A PLS Mode B Partial least squares path modeling Composite measurement Indices Weighting schemes Statistics and Probability Social Sciences(all) SDG 8 - Decent Work and Economic Growth SDG 10 - Reduced Inequalities |
description |
Di̇rsehan, T., & Henseler, J. (2023). Modeling indices using partial least squares: How to determine the optimum weights? Quality & Quantity, 57(4 Advanced PLS-PM Applications in Social Sciences), 521-535. https://doi.org/10.1007/s11135-022-01515-5 ---- Funding: Jörg Henseler gratefully acknowledges financial support from FCT Fundação para a Ciência e a Tecnologia (Portugal), national funding through a research grant from the Information Management Research Center – MagIC/NOVA IMS (UIDB/04152/2020). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-02T22:11:05Z 2023-12-01 2023-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145169 |
url |
http://hdl.handle.net/10362/145169 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0033-5177 PURE: 47525364 https://doi.org/10.1007/s11135-022-01515-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138111675957248 |