[en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS

Detalhes bibliográficos
Autor(a) principal: DENISE DE OLIVEIRA
Data de Publicação: 2006
Tipo de documento: Outros
Idioma: por
Título da fonte: Repositório Institucional da PUC-RIO (Projeto Maxwell)
Texto Completo: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@2
http://doi.org/10.17771/PUCRio.acad.8151
Resumo: [pt] O problema de decomposição de contrações em espaços de Hilbert é motivado pelo problema do subespaço invariante, o qual é um famoso problema em aberto em Teoria de Operadores. Se T (pertence) B [H] é uma contração, define- se o operador A como o limite forte da seqüência { T* n Tn (pertence) B [H]; n > ou = 1}. Este operador caracteriza as isometrias, uma vez que T é uma isometria se e somente se A = I. A decomposição de Von Neumann-Wold para isometrias estabelece que toda isometria é a soma direta ortogonal de um Shift unilateral com um operador unitário. O presente trabalho estende a decomposição de Von Neumann-Wold para contrações tais que o operador A é uma projeção ortogonal arbitrária. Através desta decomposição, conclui-se que se uma contração não possui subespaço invariante próprio, então T (pertence) C00 U C01 U C10. uma análise abrangente do efeito dessa nova decomposição é desenvolvida, interceptando a classe de contrações em questão com as classes dos operadores compactos, normais, quasinormais, subnormais, hiponormais e normalóides. Como se conclui que o operador A é uma projeção ortogonal apenas até a classe das contrações quasinormais, também é analisado o quanto o operador A referente a uma contração subnormal não-quasinormal pode se afastar de uma projeção ortogonal. Além disso, estabelece-se para contrações hipornormais o subespaço onde A é uma projeção ortogonal.
id PUC_RIO-1_e6abb2024ce20ad5bc4350cbf2e5c83e
oai_identifier_str oai:MAXWELL.puc-rio.br:8151
network_acronym_str PUC_RIO-1
network_name_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository_id_str 534
spelling [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS [pt] DECOMPOSIÇÃO DE CONTRAÇÕES EM ESPAÇOS DE HILBERT [pt] ESPACOS DE HILBERT[pt] DECOMPOSICAO[en] HILBERT SPACES[en] DECOMPOSITION[pt] O problema de decomposição de contrações em espaços de Hilbert é motivado pelo problema do subespaço invariante, o qual é um famoso problema em aberto em Teoria de Operadores. Se T (pertence) B [H] é uma contração, define- se o operador A como o limite forte da seqüência { T* n Tn (pertence) B [H]; n > ou = 1}. Este operador caracteriza as isometrias, uma vez que T é uma isometria se e somente se A = I. A decomposição de Von Neumann-Wold para isometrias estabelece que toda isometria é a soma direta ortogonal de um Shift unilateral com um operador unitário. O presente trabalho estende a decomposição de Von Neumann-Wold para contrações tais que o operador A é uma projeção ortogonal arbitrária. Através desta decomposição, conclui-se que se uma contração não possui subespaço invariante próprio, então T (pertence) C00 U C01 U C10. uma análise abrangente do efeito dessa nova decomposição é desenvolvida, interceptando a classe de contrações em questão com as classes dos operadores compactos, normais, quasinormais, subnormais, hiponormais e normalóides. Como se conclui que o operador A é uma projeção ortogonal apenas até a classe das contrações quasinormais, também é analisado o quanto o operador A referente a uma contração subnormal não-quasinormal pode se afastar de uma projeção ortogonal. Além disso, estabelece-se para contrações hipornormais o subespaço onde A é uma projeção ortogonal.[en] Decomposition of Hilbert-space contractions is motivated the invariant subspace problem, which is a famous open problem in Operator Theory. If T (pertenc) B [H] is a contraction, {T*n Tn (pertenc) B [H]; n > = 1} converger strongly. Let the operator A be its (strongly) limit. T is a isometry if and only if A = I. The von Neumann-Wold decomposition for isometries says that a isometry is the direct orthogonal sum of a unilateral shift and a unitary operator. The present work extends the von Neumann-Wold decomposition to a contrataction for wich A is an orthogonal projection. According to such a decomposition it is established that a contractin with no nontrivial invariant subspace is such that T (pertenc) C00 U C01 U C10. it follows a detailed investigation n the impact of such a new decomposition on several classes of operators; viz. compact, normal, quasinormal, subnormal, hyponormal and normaloid. It is verified that the operator A is an orthogonal projection up to the class of all quasinormal contraction T, but not for every subnormal contraction. Thus it is investigated how the operator A, for a susbnormal contraction T, can distanciate from an orthogonal projection, for hyponormal contraction T, is exhibited as wellMAXWELLCARLOS KUBRUSLYCARLOS KUBRUSLYCARLOS KUBRUSLYDENISE DE OLIVEIRA2006-04-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@1https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@2http://doi.org/10.17771/PUCRio.acad.8151porreponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)instacron:PUC_RIOinfo:eu-repo/semantics/openAccess2018-10-11T00:00:00Zoai:MAXWELL.puc-rio.br:8151Repositório InstitucionalPRIhttps://www.maxwell.vrac.puc-rio.br/ibict.phpopendoar:5342018-10-11T00:00Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)false
dc.title.none.fl_str_mv [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
[pt] DECOMPOSIÇÃO DE CONTRAÇÕES EM ESPAÇOS DE HILBERT
title [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
spellingShingle [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
DENISE DE OLIVEIRA
[pt] ESPACOS DE HILBERT
[pt] DECOMPOSICAO
[en] HILBERT SPACES
[en] DECOMPOSITION
title_short [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
title_full [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
title_fullStr [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
title_full_unstemmed [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
title_sort [en] DECOMPOSITION OF HILBERT-SPACE CONTRACTIONS
author DENISE DE OLIVEIRA
author_facet DENISE DE OLIVEIRA
author_role author
dc.contributor.none.fl_str_mv CARLOS KUBRUSLY
CARLOS KUBRUSLY
CARLOS KUBRUSLY
dc.contributor.author.fl_str_mv DENISE DE OLIVEIRA
dc.subject.por.fl_str_mv [pt] ESPACOS DE HILBERT
[pt] DECOMPOSICAO
[en] HILBERT SPACES
[en] DECOMPOSITION
topic [pt] ESPACOS DE HILBERT
[pt] DECOMPOSICAO
[en] HILBERT SPACES
[en] DECOMPOSITION
description [pt] O problema de decomposição de contrações em espaços de Hilbert é motivado pelo problema do subespaço invariante, o qual é um famoso problema em aberto em Teoria de Operadores. Se T (pertence) B [H] é uma contração, define- se o operador A como o limite forte da seqüência { T* n Tn (pertence) B [H]; n > ou = 1}. Este operador caracteriza as isometrias, uma vez que T é uma isometria se e somente se A = I. A decomposição de Von Neumann-Wold para isometrias estabelece que toda isometria é a soma direta ortogonal de um Shift unilateral com um operador unitário. O presente trabalho estende a decomposição de Von Neumann-Wold para contrações tais que o operador A é uma projeção ortogonal arbitrária. Através desta decomposição, conclui-se que se uma contração não possui subespaço invariante próprio, então T (pertence) C00 U C01 U C10. uma análise abrangente do efeito dessa nova decomposição é desenvolvida, interceptando a classe de contrações em questão com as classes dos operadores compactos, normais, quasinormais, subnormais, hiponormais e normalóides. Como se conclui que o operador A é uma projeção ortogonal apenas até a classe das contrações quasinormais, também é analisado o quanto o operador A referente a uma contração subnormal não-quasinormal pode se afastar de uma projeção ortogonal. Além disso, estabelece-se para contrações hipornormais o subespaço onde A é uma projeção ortogonal.
publishDate 2006
dc.date.none.fl_str_mv 2006-04-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@2
http://doi.org/10.17771/PUCRio.acad.8151
url https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8151@2
http://doi.org/10.17771/PUCRio.acad.8151
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MAXWELL
publisher.none.fl_str_mv MAXWELL
dc.source.none.fl_str_mv reponame:Repositório Institucional da PUC-RIO (Projeto Maxwell)
instname:Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron:PUC_RIO
instname_str Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
instacron_str PUC_RIO
institution PUC_RIO
reponame_str Repositório Institucional da PUC-RIO (Projeto Maxwell)
collection Repositório Institucional da PUC-RIO (Projeto Maxwell)
repository.name.fl_str_mv Repositório Institucional da PUC-RIO (Projeto Maxwell) - Pontifícia Universidade Católica do Rio de Janeiro (PUC-RIO)
repository.mail.fl_str_mv
_version_ 1814822557233184768