Introduction to Charles S. Peirce’s Existential Graphs Beta System

Detalhes bibliográficos
Autor(a) principal: Moraes, Lafayette de
Data de Publicação: 2013
Outros Autores: Queiroz, João
Tipo de documento: Artigo
Idioma: por
Título da fonte: Cognitio (São Paulo. Online)
Texto Completo: https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207
Resumo: Existential Graphs (EG) are logical notations of a topological nature, and are always among the most original inventions of C S. Peirce (1839-1914). It is a logical-diagram graph system through which, according to Peirce, any thought development can be represented with precision (CP 4.530). They are divided into three sub-systems “alpha, beta and gamma”, approximately equivalent to the classical prepositional calculus, to the classical predicate calculus of the first order, and to a type of modal logic. We propose to present the beta system. What we will show will be confined to the monadic predicate calculus, with emphasis on the Aristotelian categorical syllogisms.
id PUC_SP-15_f2bea34b698190cf9775bdf3ae01f6ba
oai_identifier_str oai:ojs.pkp.sfu.ca:article/13207
network_acronym_str PUC_SP-15
network_name_str Cognitio (São Paulo. Online)
repository_id_str
spelling Introduction to Charles S. Peirce’s Existential Graphs Beta SystemIntrodução ao Sistema Beta dos Grafos Existenciais de C.S. PeirceLógicaC.S. PeirceGrafosLogicC.S. PeirceGraphsExistential Graphs (EG) are logical notations of a topological nature, and are always among the most original inventions of C S. Peirce (1839-1914). It is a logical-diagram graph system through which, according to Peirce, any thought development can be represented with precision (CP 4.530). They are divided into three sub-systems “alpha, beta and gamma”, approximately equivalent to the classical prepositional calculus, to the classical predicate calculus of the first order, and to a type of modal logic. We propose to present the beta system. What we will show will be confined to the monadic predicate calculus, with emphasis on the Aristotelian categorical syllogisms.Os grafos existenciais (GE) são uma notação lógica de caráter topológico e estão entre as mais originais invenções de C.S. Peirce (1839-1914). Trata-se de um sistema gráfico de diagramas lógicos por meio do qual, segundo Peirce, “qualquer desenvolvimento do pensamento pode ser representado com precisão” (CP 4.530). Eles se dividem em três subsistemas – alfa, beta e gama –, aproximadamente equivalentes ao cálculo proposicional clássico, ao cálculo de predicados clássico de primeira ordem, e a um tipo de lógica modal. Nosso propósito é apresentar o sistema beta. O que apresentaremos se restringe ao cálculo de predicados monádicos, com ênfase na silogística categórica de Aristóteles.Pontifícia Universidade Católica de São Paulo2013-01-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207Cognitio: Revista de Filosofia; Vol. 5 No. 1 (2004); 28-43Cognitio: Revista de Filosofia; v. 5 n. 1 (2004); 28-432316-52781518-7187reponame:Cognitio (São Paulo. Online)instname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPporhttps://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207/9729Copyright (c) 2013 http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMoraes, Lafayette deQueiroz, João2024-07-01T13:09:31Zoai:ojs.pkp.sfu.ca:article/13207Revistahttps://revistas.pucsp.br/index.php/cognitiofilosofiaPRIhttps://revistas.pucsp.br/index.php/cognitiofilosofia/oairevcognitio@gmail.com2316-52781518-7187opendoar:2024-07-01T13:09:31Cognitio (São Paulo. Online) - Pontifícia Universidade Católica de São Paulo (PUC-SP)false
dc.title.none.fl_str_mv Introduction to Charles S. Peirce’s Existential Graphs Beta System
Introdução ao Sistema Beta dos Grafos Existenciais de C.S. Peirce
title Introduction to Charles S. Peirce’s Existential Graphs Beta System
spellingShingle Introduction to Charles S. Peirce’s Existential Graphs Beta System
Moraes, Lafayette de
Lógica
C.S. Peirce
Grafos
Logic
C.S. Peirce
Graphs
title_short Introduction to Charles S. Peirce’s Existential Graphs Beta System
title_full Introduction to Charles S. Peirce’s Existential Graphs Beta System
title_fullStr Introduction to Charles S. Peirce’s Existential Graphs Beta System
title_full_unstemmed Introduction to Charles S. Peirce’s Existential Graphs Beta System
title_sort Introduction to Charles S. Peirce’s Existential Graphs Beta System
author Moraes, Lafayette de
author_facet Moraes, Lafayette de
Queiroz, João
author_role author
author2 Queiroz, João
author2_role author
dc.contributor.author.fl_str_mv Moraes, Lafayette de
Queiroz, João
dc.subject.por.fl_str_mv Lógica
C.S. Peirce
Grafos
Logic
C.S. Peirce
Graphs
topic Lógica
C.S. Peirce
Grafos
Logic
C.S. Peirce
Graphs
description Existential Graphs (EG) are logical notations of a topological nature, and are always among the most original inventions of C S. Peirce (1839-1914). It is a logical-diagram graph system through which, according to Peirce, any thought development can be represented with precision (CP 4.530). They are divided into three sub-systems “alpha, beta and gamma”, approximately equivalent to the classical prepositional calculus, to the classical predicate calculus of the first order, and to a type of modal logic. We propose to present the beta system. What we will show will be confined to the monadic predicate calculus, with emphasis on the Aristotelian categorical syllogisms.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-11
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207
url https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207/9729
dc.rights.driver.fl_str_mv Copyright (c) 2013 http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2013 http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica de São Paulo
publisher.none.fl_str_mv Pontifícia Universidade Católica de São Paulo
dc.source.none.fl_str_mv Cognitio: Revista de Filosofia; Vol. 5 No. 1 (2004); 28-43
Cognitio: Revista de Filosofia; v. 5 n. 1 (2004); 28-43
2316-5278
1518-7187
reponame:Cognitio (São Paulo. Online)
instname:Pontifícia Universidade Católica de São Paulo (PUC-SP)
instacron:PUC_SP
instname_str Pontifícia Universidade Católica de São Paulo (PUC-SP)
instacron_str PUC_SP
institution PUC_SP
reponame_str Cognitio (São Paulo. Online)
collection Cognitio (São Paulo. Online)
repository.name.fl_str_mv Cognitio (São Paulo. Online) - Pontifícia Universidade Católica de São Paulo (PUC-SP)
repository.mail.fl_str_mv revcognitio@gmail.com
_version_ 1803387420458090496