Introduction to Charles S. Peirce’s Existential Graphs Beta System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Cognitio (São Paulo. Online) |
Texto Completo: | https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207 |
Resumo: | Existential Graphs (EG) are logical notations of a topological nature, and are always among the most original inventions of C S. Peirce (1839-1914). It is a logical-diagram graph system through which, according to Peirce, any thought development can be represented with precision (CP 4.530). They are divided into three sub-systems “alpha, beta and gamma”, approximately equivalent to the classical prepositional calculus, to the classical predicate calculus of the first order, and to a type of modal logic. We propose to present the beta system. What we will show will be confined to the monadic predicate calculus, with emphasis on the Aristotelian categorical syllogisms. |
id |
PUC_SP-15_f2bea34b698190cf9775bdf3ae01f6ba |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/13207 |
network_acronym_str |
PUC_SP-15 |
network_name_str |
Cognitio (São Paulo. Online) |
repository_id_str |
|
spelling |
Introduction to Charles S. Peirce’s Existential Graphs Beta SystemIntrodução ao Sistema Beta dos Grafos Existenciais de C.S. PeirceLógicaC.S. PeirceGrafosLogicC.S. PeirceGraphsExistential Graphs (EG) are logical notations of a topological nature, and are always among the most original inventions of C S. Peirce (1839-1914). It is a logical-diagram graph system through which, according to Peirce, any thought development can be represented with precision (CP 4.530). They are divided into three sub-systems “alpha, beta and gamma”, approximately equivalent to the classical prepositional calculus, to the classical predicate calculus of the first order, and to a type of modal logic. We propose to present the beta system. What we will show will be confined to the monadic predicate calculus, with emphasis on the Aristotelian categorical syllogisms.Os grafos existenciais (GE) são uma notação lógica de caráter topológico e estão entre as mais originais invenções de C.S. Peirce (1839-1914). Trata-se de um sistema gráfico de diagramas lógicos por meio do qual, segundo Peirce, “qualquer desenvolvimento do pensamento pode ser representado com precisão” (CP 4.530). Eles se dividem em três subsistemas – alfa, beta e gama –, aproximadamente equivalentes ao cálculo proposicional clássico, ao cálculo de predicados clássico de primeira ordem, e a um tipo de lógica modal. Nosso propósito é apresentar o sistema beta. O que apresentaremos se restringe ao cálculo de predicados monádicos, com ênfase na silogística categórica de Aristóteles.Pontifícia Universidade Católica de São Paulo2013-01-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207Cognitio: Revista de Filosofia; Vol. 5 No. 1 (2004); 28-43Cognitio: Revista de Filosofia; v. 5 n. 1 (2004); 28-432316-52781518-7187reponame:Cognitio (São Paulo. Online)instname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPporhttps://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207/9729Copyright (c) 2013 http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMoraes, Lafayette deQueiroz, João2024-07-01T13:09:31Zoai:ojs.pkp.sfu.ca:article/13207Revistahttps://revistas.pucsp.br/index.php/cognitiofilosofiaPRIhttps://revistas.pucsp.br/index.php/cognitiofilosofia/oairevcognitio@gmail.com2316-52781518-7187opendoar:2024-07-01T13:09:31Cognitio (São Paulo. Online) - Pontifícia Universidade Católica de São Paulo (PUC-SP)false |
dc.title.none.fl_str_mv |
Introduction to Charles S. Peirce’s Existential Graphs Beta System Introdução ao Sistema Beta dos Grafos Existenciais de C.S. Peirce |
title |
Introduction to Charles S. Peirce’s Existential Graphs Beta System |
spellingShingle |
Introduction to Charles S. Peirce’s Existential Graphs Beta System Moraes, Lafayette de Lógica C.S. Peirce Grafos Logic C.S. Peirce Graphs |
title_short |
Introduction to Charles S. Peirce’s Existential Graphs Beta System |
title_full |
Introduction to Charles S. Peirce’s Existential Graphs Beta System |
title_fullStr |
Introduction to Charles S. Peirce’s Existential Graphs Beta System |
title_full_unstemmed |
Introduction to Charles S. Peirce’s Existential Graphs Beta System |
title_sort |
Introduction to Charles S. Peirce’s Existential Graphs Beta System |
author |
Moraes, Lafayette de |
author_facet |
Moraes, Lafayette de Queiroz, João |
author_role |
author |
author2 |
Queiroz, João |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Moraes, Lafayette de Queiroz, João |
dc.subject.por.fl_str_mv |
Lógica C.S. Peirce Grafos Logic C.S. Peirce Graphs |
topic |
Lógica C.S. Peirce Grafos Logic C.S. Peirce Graphs |
description |
Existential Graphs (EG) are logical notations of a topological nature, and are always among the most original inventions of C S. Peirce (1839-1914). It is a logical-diagram graph system through which, according to Peirce, any thought development can be represented with precision (CP 4.530). They are divided into three sub-systems “alpha, beta and gamma”, approximately equivalent to the classical prepositional calculus, to the classical predicate calculus of the first order, and to a type of modal logic. We propose to present the beta system. What we will show will be confined to the monadic predicate calculus, with emphasis on the Aristotelian categorical syllogisms. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-11 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207 |
url |
https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.pucsp.br/index.php/cognitiofilosofia/article/view/13207/9729 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2013 http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2013 http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
publisher.none.fl_str_mv |
Pontifícia Universidade Católica de São Paulo |
dc.source.none.fl_str_mv |
Cognitio: Revista de Filosofia; Vol. 5 No. 1 (2004); 28-43 Cognitio: Revista de Filosofia; v. 5 n. 1 (2004); 28-43 2316-5278 1518-7187 reponame:Cognitio (São Paulo. Online) instname:Pontifícia Universidade Católica de São Paulo (PUC-SP) instacron:PUC_SP |
instname_str |
Pontifícia Universidade Católica de São Paulo (PUC-SP) |
instacron_str |
PUC_SP |
institution |
PUC_SP |
reponame_str |
Cognitio (São Paulo. Online) |
collection |
Cognitio (São Paulo. Online) |
repository.name.fl_str_mv |
Cognitio (São Paulo. Online) - Pontifícia Universidade Católica de São Paulo (PUC-SP) |
repository.mail.fl_str_mv |
revcognitio@gmail.com |
_version_ |
1803387420458090496 |