Projetando chatbots: extraindo informações de canais de atendimento

Detalhes bibliográficos
Autor(a) principal: Lemes, Jonatan de Sá
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da PUC_SP
Texto Completo: https://tede2.pucsp.br/handle/handle/23285
Resumo: With the increase in interaction between customers and digital platforms, there is a need to produce increasingly sophisticated solutions, aiming to reduce costs and meet a growing demand for customer service, present in various business niches. In this context, computer programs called Chatbots emerge, which in a way, aim to supply this need. The construction of Chatbots on more modern platforms requires from designers a series of inserts of prior knowledge so that they can become functional, however, a question arises: what content should be predicted as a knowledge base? Which Entities, Intentions and Dialogues are expected for the business? This research seeks to quantify and explore methods of extracting information from known data sources in service channels. The main objective of the research is to support the Chatbot designer in creating the service scripts without depending on his empirical experience and diffuse information about the business. In this research, statistical and probabilistic techniques are considered to extract information from data sources, whether structured or not. The most common approach to building Chatbots is described based on the concepts of: Entity, Intent and Dialogue, as well as an alternative approach based on Markov Chains; A case study is proposed; For the extraction of information, techniques for converting audio to text (TTS) were considered, which demonstrated a slight to moderate loss in form; Generation and pre-processing of Linguistic and Computational Corpus (Tokenization, Steeming, Lemmatization, Filters); Application of frequency calculation (TF) techniques, considered satisfactory, as it reveals the vocabulary of the business; Relevance of terms (TF-IDF), considered unsatisfactory, for displaying common and irrelevant terms for the business; Labeling techniques (POS Tagging), considered satisfactory, however, with processing limitations; Entity Extraction (NER), considered satisfactory, with accuracy restrictions linked to the training set used; Extraction of Intentions and Dialogues using syntactic labeling, which was sensitive from the point of view of human analysis due to the volume of sentences generated; Clustering of terms (KMeans) using dimensionality reduction (PCA), considered unsatisfactory, due to the sparse data presented; Probabilistic classification of texts (Bayes), considered satisfactory, however, with quality restriction depending on the training set; At the end, a software modeling (UML) is proposed, presenting diagrams of use cases, classes and sequence, an entity relationship model (MER) for data persistence and screen prototypes related to the expected support software. It is concluded in general that there is the possibility of extracting considerable information to design a Chatbot through the application of the techniques described in the research. It should be noted that the cognitive effort offered to the designer can vary depending on the volume of data to be processed
id PUC_SP-1_144a80f829e3a77be17c67bbe4c46bae
oai_identifier_str oai:repositorio.pucsp.br:handle/23285
network_acronym_str PUC_SP-1
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_SP
repository_id_str
spelling Bastos, Marcus Vinícius Fainerhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K2095756T1Lemes, Jonatan de Sá2020-10-29T16:22:59Z2020-07-30Lemes, Jonatan de Sá. Projetando chatbots: extraindo informações de canais de atendimento. 2020. 304 f. Dissertação (Mestrado em Tecnologias da Inteligência e Design Digital) - Programa de Estudos Pós-Graduados em Tecnologias da Inteligência e Design Digital, Pontifícia Universidade Católica de São Paulo, São Paulo, 2020.https://tede2.pucsp.br/handle/handle/23285With the increase in interaction between customers and digital platforms, there is a need to produce increasingly sophisticated solutions, aiming to reduce costs and meet a growing demand for customer service, present in various business niches. In this context, computer programs called Chatbots emerge, which in a way, aim to supply this need. The construction of Chatbots on more modern platforms requires from designers a series of inserts of prior knowledge so that they can become functional, however, a question arises: what content should be predicted as a knowledge base? Which Entities, Intentions and Dialogues are expected for the business? This research seeks to quantify and explore methods of extracting information from known data sources in service channels. The main objective of the research is to support the Chatbot designer in creating the service scripts without depending on his empirical experience and diffuse information about the business. In this research, statistical and probabilistic techniques are considered to extract information from data sources, whether structured or not. The most common approach to building Chatbots is described based on the concepts of: Entity, Intent and Dialogue, as well as an alternative approach based on Markov Chains; A case study is proposed; For the extraction of information, techniques for converting audio to text (TTS) were considered, which demonstrated a slight to moderate loss in form; Generation and pre-processing of Linguistic and Computational Corpus (Tokenization, Steeming, Lemmatization, Filters); Application of frequency calculation (TF) techniques, considered satisfactory, as it reveals the vocabulary of the business; Relevance of terms (TF-IDF), considered unsatisfactory, for displaying common and irrelevant terms for the business; Labeling techniques (POS Tagging), considered satisfactory, however, with processing limitations; Entity Extraction (NER), considered satisfactory, with accuracy restrictions linked to the training set used; Extraction of Intentions and Dialogues using syntactic labeling, which was sensitive from the point of view of human analysis due to the volume of sentences generated; Clustering of terms (KMeans) using dimensionality reduction (PCA), considered unsatisfactory, due to the sparse data presented; Probabilistic classification of texts (Bayes), considered satisfactory, however, with quality restriction depending on the training set; At the end, a software modeling (UML) is proposed, presenting diagrams of use cases, classes and sequence, an entity relationship model (MER) for data persistence and screen prototypes related to the expected support software. It is concluded in general that there is the possibility of extracting considerable information to design a Chatbot through the application of the techniques described in the research. It should be noted that the cognitive effort offered to the designer can vary depending on the volume of data to be processedCom o aumento da interação entre clientes e plataformas digitais surge a necessidade de se produzir soluções cada vez mais sofisticadas, visando reduzir custos e suprir uma demanda crescente por atendimento ao público, presente em diversos nichos de negócio. Nesse contexto emergem programas de computadores chamados Chatbots, que de certo modo, se propõem a suprir essa necessidade. A construção de Chatbots em plataformas mais modernas requer dos projetistas uma série de inserções de conhecimento prévio para que possam se tornar funcionais, porém, levanta-se uma questão: qual conteúdo deve ser previsto como base de conhecimento? Quais Entidades, Intenções e Diálogos são esperados para o negócio? Busca-se, nessa pesquisa, quantificar e explorar métodos de extração de informação de fontes de dados conhecidas em canais de atendimento. O principal objetivo da pesquisa é dar suporte ao projetista de Chatbot na criação dos roteiros de atendimento sem depender de sua experiência empírica e informações difusas sobre o negócio. Nessa pesquisa são consideradas técnicas estatísticas e probabilísticas para se extrair informação de fontes de dados, sejam elas estruturadas ou não. É descrita a abordagem mais comum de construção de Chatbots baseando-se nos conceitos de: Entidade, Intenção e Diálogo, assim como, uma abordagem alternativa baseada em Cadeias de Markov; Um estudo de caso é proposto; Para a extração de informação foram consideradas técnicas de conversão de áudio em texto (TTS) que demonstrou perda leve a moderada quanto a sua forma; Geração e pré processamento de Corpus Linguístico e Computacional (Tokenization, Steeming, Lemmatization, Filters); Aplicação de técnicas de cálculo de frequência (TF), considerada satisfatória, por revelar o vocabulário do negócio; Relevância de termos (TF-IDF), considerada não satisfatória, por exibir termos comuns e irrelevantes para o negócio; Técnicas de etiquetamento (POS Tagging), considerada satisfatória, porém, com limitações de processamento; Extração de Entidades (NER), considerada satisfatória, com restrições de acurácia ligado ao conjunto de treinamento utilizado; Extração de Intenções e Diálogos utilizando etiquetamento sintático, que demostrou-se sensível do ponto de vista de análise humana devido ao volume de sentenças geradas; Clusterização de termos (KMeans) com uso de redução de dimensionalidade (PCA), considerada insatisfatória, pela esparsidade de dados apresentados; Classificação probabilística de textos (Bayes), considerada satisfatória, porém, com restrição de qualidade dependente do conjunto de treinamento; Ao final é proposta uma modelagem de software (UML), apresentando diagramas de casos de uso, classes e sequência, um modelo entidade relacionamento (MER) para persistência de dados e protótipos de telas relativo ao software de apoio esperado. Conclui-se no geral que existe a possibilidade de se extrair informações consideráveis para se projetar um Chatbot através da aplicação das técnicas descritas na pesquisa. Ressalta-se que o esforço cognitivo oferecido ao projetista pode variar dependendo do volume de dados a ser processadoapplication/pdfhttp://tede2.pucsp.br/tede/retrieve/52553/Jonatan%20de%20S%c3%a1%20Lemes.pdf.jpgporPontifícia Universidade Católica de São PauloPrograma de Estudos Pós-Graduados em Tecnologias da Inteligência e Design DigitalPUC-SPBrasilFaculdade de Ciências Exatas e TecnologiaProcessamento de linguagem naturalChatbotsTradução voz textoNatural language processingChatbotSpeech to textCNPQ::ENGENHARIASProjetando chatbots: extraindo informações de canais de atendimentoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_SPinstname:Pontifícia Universidade Católica de São Paulo (PUC-SP)instacron:PUC_SPTEXTJonatan de Sá Lemes.pdf.txtJonatan de Sá Lemes.pdf.txtExtracted texttext/plain400065https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/4/Jonatan%20de%20S%c3%a1%20Lemes.pdf.txtff49f8eb53a741e49a3578b4c4d78400MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALJonatan de Sá Lemes.pdfJonatan de Sá Lemes.pdfapplication/pdf7652966https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/2/Jonatan%20de%20S%c3%a1%20Lemes.pdf09b1d02fd635f19183a06a31a2e13f08MD52THUMBNAILJonatan de Sá Lemes.pdf.jpgJonatan de Sá Lemes.pdf.jpgGenerated Thumbnailimage/jpeg3477https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/3/Jonatan%20de%20S%c3%a1%20Lemes.pdf.jpg5fb0df7c6e5c2cc53748bad38b212fc8MD53handle/232852022-06-15 12:44:59.676oai:repositorio.pucsp.br:handle/23285Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://sapientia.pucsp.br/https://sapientia.pucsp.br/oai/requestbngkatende@pucsp.br||rapassi@pucsp.bropendoar:2022-06-15T15:44:59Biblioteca Digital de Teses e Dissertações da PUC_SP - Pontifícia Universidade Católica de São Paulo (PUC-SP)false
dc.title.por.fl_str_mv Projetando chatbots: extraindo informações de canais de atendimento
title Projetando chatbots: extraindo informações de canais de atendimento
spellingShingle Projetando chatbots: extraindo informações de canais de atendimento
Lemes, Jonatan de Sá
Processamento de linguagem natural
Chatbots
Tradução voz texto
Natural language processing
Chatbot
Speech to text
CNPQ::ENGENHARIAS
title_short Projetando chatbots: extraindo informações de canais de atendimento
title_full Projetando chatbots: extraindo informações de canais de atendimento
title_fullStr Projetando chatbots: extraindo informações de canais de atendimento
title_full_unstemmed Projetando chatbots: extraindo informações de canais de atendimento
title_sort Projetando chatbots: extraindo informações de canais de atendimento
author Lemes, Jonatan de Sá
author_facet Lemes, Jonatan de Sá
author_role author
dc.contributor.advisor1.fl_str_mv Bastos, Marcus Vinícius Fainer
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K2095756T1
dc.contributor.author.fl_str_mv Lemes, Jonatan de Sá
contributor_str_mv Bastos, Marcus Vinícius Fainer
dc.subject.por.fl_str_mv Processamento de linguagem natural
Chatbots
Tradução voz texto
topic Processamento de linguagem natural
Chatbots
Tradução voz texto
Natural language processing
Chatbot
Speech to text
CNPQ::ENGENHARIAS
dc.subject.eng.fl_str_mv Natural language processing
Chatbot
Speech to text
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
description With the increase in interaction between customers and digital platforms, there is a need to produce increasingly sophisticated solutions, aiming to reduce costs and meet a growing demand for customer service, present in various business niches. In this context, computer programs called Chatbots emerge, which in a way, aim to supply this need. The construction of Chatbots on more modern platforms requires from designers a series of inserts of prior knowledge so that they can become functional, however, a question arises: what content should be predicted as a knowledge base? Which Entities, Intentions and Dialogues are expected for the business? This research seeks to quantify and explore methods of extracting information from known data sources in service channels. The main objective of the research is to support the Chatbot designer in creating the service scripts without depending on his empirical experience and diffuse information about the business. In this research, statistical and probabilistic techniques are considered to extract information from data sources, whether structured or not. The most common approach to building Chatbots is described based on the concepts of: Entity, Intent and Dialogue, as well as an alternative approach based on Markov Chains; A case study is proposed; For the extraction of information, techniques for converting audio to text (TTS) were considered, which demonstrated a slight to moderate loss in form; Generation and pre-processing of Linguistic and Computational Corpus (Tokenization, Steeming, Lemmatization, Filters); Application of frequency calculation (TF) techniques, considered satisfactory, as it reveals the vocabulary of the business; Relevance of terms (TF-IDF), considered unsatisfactory, for displaying common and irrelevant terms for the business; Labeling techniques (POS Tagging), considered satisfactory, however, with processing limitations; Entity Extraction (NER), considered satisfactory, with accuracy restrictions linked to the training set used; Extraction of Intentions and Dialogues using syntactic labeling, which was sensitive from the point of view of human analysis due to the volume of sentences generated; Clustering of terms (KMeans) using dimensionality reduction (PCA), considered unsatisfactory, due to the sparse data presented; Probabilistic classification of texts (Bayes), considered satisfactory, however, with quality restriction depending on the training set; At the end, a software modeling (UML) is proposed, presenting diagrams of use cases, classes and sequence, an entity relationship model (MER) for data persistence and screen prototypes related to the expected support software. It is concluded in general that there is the possibility of extracting considerable information to design a Chatbot through the application of the techniques described in the research. It should be noted that the cognitive effort offered to the designer can vary depending on the volume of data to be processed
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-10-29T16:22:59Z
dc.date.issued.fl_str_mv 2020-07-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Lemes, Jonatan de Sá. Projetando chatbots: extraindo informações de canais de atendimento. 2020. 304 f. Dissertação (Mestrado em Tecnologias da Inteligência e Design Digital) - Programa de Estudos Pós-Graduados em Tecnologias da Inteligência e Design Digital, Pontifícia Universidade Católica de São Paulo, São Paulo, 2020.
dc.identifier.uri.fl_str_mv https://tede2.pucsp.br/handle/handle/23285
identifier_str_mv Lemes, Jonatan de Sá. Projetando chatbots: extraindo informações de canais de atendimento. 2020. 304 f. Dissertação (Mestrado em Tecnologias da Inteligência e Design Digital) - Programa de Estudos Pós-Graduados em Tecnologias da Inteligência e Design Digital, Pontifícia Universidade Católica de São Paulo, São Paulo, 2020.
url https://tede2.pucsp.br/handle/handle/23285
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica de São Paulo
dc.publisher.program.fl_str_mv Programa de Estudos Pós-Graduados em Tecnologias da Inteligência e Design Digital
dc.publisher.initials.fl_str_mv PUC-SP
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Ciências Exatas e Tecnologia
publisher.none.fl_str_mv Pontifícia Universidade Católica de São Paulo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_SP
instname:Pontifícia Universidade Católica de São Paulo (PUC-SP)
instacron:PUC_SP
instname_str Pontifícia Universidade Católica de São Paulo (PUC-SP)
instacron_str PUC_SP
institution PUC_SP
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_SP
collection Biblioteca Digital de Teses e Dissertações da PUC_SP
bitstream.url.fl_str_mv https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/4/Jonatan%20de%20S%c3%a1%20Lemes.pdf.txt
https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/1/license.txt
https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/2/Jonatan%20de%20S%c3%a1%20Lemes.pdf
https://repositorio.pucsp.br/xmlui/bitstream/handle/23285/3/Jonatan%20de%20S%c3%a1%20Lemes.pdf.jpg
bitstream.checksum.fl_str_mv ff49f8eb53a741e49a3578b4c4d78400
bd3efa91386c1718a7f26a329fdcb468
09b1d02fd635f19183a06a31a2e13f08
5fb0df7c6e5c2cc53748bad38b212fc8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_SP - Pontifícia Universidade Católica de São Paulo (PUC-SP)
repository.mail.fl_str_mv bngkatende@pucsp.br||rapassi@pucsp.br
_version_ 1809277880320917504