Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos

Detalhes bibliográficos
Autor(a) principal: Ávila, Maurício Boff de
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da PUC_RS
Texto Completo: http://tede2.pucrs.br/tede2/handle/tede/9445
Resumo: Antibiotics are the most successful drugs of the 20th century and, probably, of the entire history of medicine. However, as the years went by, discoveries of new antimicrobial compounds became increasingly scarce and bacterial resistance is in evidence. From this, we selected the enzyme Trans-2-Enoyl (ACP) Reductase (InhA) (E.C. 1.3.1.9) as one of the focuses of this work, because it plays a crucial role in the anti-tuberculosis treatment. In the same way that new strains of resistant bacteria can bring complications for the coming years of public health, neoplasms are diseases that have been known for many years, but which still need to be resolved quickly and without serious side effects. Cancer can be defined as a set of cells with uncontrolled growth and the ability to invade new tissues. A directed look to this need for new chemotherapy drugs against neoplasms, we chose the enzyme Cyclin-dependent Kinase type 2 (CDK2) (E.C. 2.7.11.22) as another target of the work, mainly due to its controlling activity of the eukaryotic cell cycle. In line with the current needs exposed before, the general objective of the present work is to determine the structural bases for the inhibition of the enzymes InhA and CDK2 with a focus on the interactions that occur in the protein-ligand system. The work was carried out using the methods of Bioinspired Computing, a field of Natural Computing, which bases its approach on processes observed in nature. The methodological basis of the study followed the steps of performing molecular docking to find energetic terms that best described the interactions of each of the enzymes with possible non-covalent ligands. With the aid of the SAnDReS software, Machine Learning Methods were used, based on the classic energy terms present in the MVD, AD4 and Vina programs, polynomial score functions were constructed in an attempt to predict the degree of affinity between the two biological systems before cited and possible candidates for inhibitors. For InhA, the two polynomial functions, Polscore231 (Vina) ( = 0.709; p-value1 <0.03) and Polscore345 (AD4) ( = 0.717; p-value1 <0.03) obtained satisfactory statistical values, placing themselves as good options in inhibitor selection studies. For CDK2, the Polscore60 (MVD) polynomial function ( = 0.328; p-value1 <0.02) was the best option both in predicting the affinity of a set of structures with a resolution less than 1.5Å (HRIC50), and for the set of structures containing only CDK's2. From the correlation values obtained for each of the functions, is suggested that in later studies the polynomial functions are used in the selection of candidates for possible new drugs with inhibitory action on the catalytic site of these two enzymes.
id P_RS_4e6941a50e46eecc6f82fa87f0425116
oai_identifier_str oai:tede2.pucrs.br:tede/9445
network_acronym_str P_RS
network_name_str Biblioteca Digital de Teses e Dissertações da PUC_RS
repository_id_str
spelling Azevedo Junior, Walter Filgueira dehttp://lattes.cnpq.br/4183276948524704http://lattes.cnpq.br/0602658985169124Ávila, Maurício Boff de2020-11-30T14:31:34Z2020-10-15http://tede2.pucrs.br/tede2/handle/tede/9445Antibiotics are the most successful drugs of the 20th century and, probably, of the entire history of medicine. However, as the years went by, discoveries of new antimicrobial compounds became increasingly scarce and bacterial resistance is in evidence. From this, we selected the enzyme Trans-2-Enoyl (ACP) Reductase (InhA) (E.C. 1.3.1.9) as one of the focuses of this work, because it plays a crucial role in the anti-tuberculosis treatment. In the same way that new strains of resistant bacteria can bring complications for the coming years of public health, neoplasms are diseases that have been known for many years, but which still need to be resolved quickly and without serious side effects. Cancer can be defined as a set of cells with uncontrolled growth and the ability to invade new tissues. A directed look to this need for new chemotherapy drugs against neoplasms, we chose the enzyme Cyclin-dependent Kinase type 2 (CDK2) (E.C. 2.7.11.22) as another target of the work, mainly due to its controlling activity of the eukaryotic cell cycle. In line with the current needs exposed before, the general objective of the present work is to determine the structural bases for the inhibition of the enzymes InhA and CDK2 with a focus on the interactions that occur in the protein-ligand system. The work was carried out using the methods of Bioinspired Computing, a field of Natural Computing, which bases its approach on processes observed in nature. The methodological basis of the study followed the steps of performing molecular docking to find energetic terms that best described the interactions of each of the enzymes with possible non-covalent ligands. With the aid of the SAnDReS software, Machine Learning Methods were used, based on the classic energy terms present in the MVD, AD4 and Vina programs, polynomial score functions were constructed in an attempt to predict the degree of affinity between the two biological systems before cited and possible candidates for inhibitors. For InhA, the two polynomial functions, Polscore231 (Vina) ( = 0.709; p-value1 <0.03) and Polscore345 (AD4) ( = 0.717; p-value1 <0.03) obtained satisfactory statistical values, placing themselves as good options in inhibitor selection studies. For CDK2, the Polscore60 (MVD) polynomial function ( = 0.328; p-value1 <0.02) was the best option both in predicting the affinity of a set of structures with a resolution less than 1.5Å (HRIC50), and for the set of structures containing only CDK's2. From the correlation values obtained for each of the functions, is suggested that in later studies the polynomial functions are used in the selection of candidates for possible new drugs with inhibitory action on the catalytic site of these two enzymes.Antibióticos são os medicamentos de maior sucesso do século XX e, provavelmente, de toda a história da medicina. Porém, conforme os anos foram passando, as descobertas de novos compostos antimicrobianos tornaram-se cada vez mais escassas e a resistência bacteriana está em evidência. A partir disso, selecionou-se a enzima Trans-2-Enoil (ACP) Redutase (InhA) (E.C. 1.3.1.9) como um dos focos desse trabalho, pois apresenta papel crucial no tratamento antituberculose. Da mesma forma que as novas cepas de bactérias resistentes podem trazer complicações para os próximos anos da saúde pública, as neoplasias são doenças conhecidas há muitos anos, mas que ainda carecem de uma resolução rápida e sem efeitos colaterais graves. Câncer pode ser definido, simplificadamente, como um conjunto de células com crescimento descontrolado e com capacidade de invadir novos tecidos. Com um olhar direcionado para essa necessidade de novos fármacos quimioterápicos contra neoplasias, escolheu-se a enzima Quinase dependente de Ciclina tipo 2 (CDK2) (E.C. 2.7.11.22) como outro alvo do trabalho, em virtude, principalmente, da sua atividade controladora do ciclo celular eucariótico. Em consonância as necessidades atuais expostas anteriormente, o objetivo geral do presente trabalho se designa a determinar as bases estruturais para a inibição das enzimas InhA e CDK2 com enfoque nas interações ocorridas no sistema proteína-ligante. A execução do trabalho foi realizada a partir dos métodos de Computação Bioinspirada, campo da Computação Natural, que baseia sua abordagem em processos observados na natureza. Como base metodológica do estudo seguiu-se as etapas de realização do docking molecular na tentativa de encontrar termos energéticos que melhor descrevessem as interações de cada uma das enzimas com possíveis ligantes não-covalentes. Com o auxílio do software SAnDReS foram utilizados Métodos de Aprendizado de Máquina para que, a partir dos termos energéticos clássicos presentes nos programas MVD, AD4 e Vina, fossem construídas funções escore polinomiais na tentativa de predizer o grau de afinidade entre os dois sistemas biológicos anteriormente citados e possíveis candidatos a inibidores. Para InhA, as duas funções polinomiais, Polscore231 (Vina) ( = 0,709; p-value1 < 0,03) e Polscore345 (AD4) ( = 0,717; p-value1 < 0,03) obtiveram valores estatísticos satisfatórios colocando-se como boas opções em estudos de seleção de inibidores. Para CDK2, a função polinomial Polscore60 (MVD) ( = 0,328; p-value1 < 0,02) foi a melhor opção tanto na predição de afinidade de um conjunto de estruturas com resolução menor de 1,5Å (HRIC50), quanto para o conjunto de estruturas contendo apenas CDK’s2. A partir dos valores de correlação obtidos para cada uma das funções é sugerido que em estudos posteriores as funções polinomiais sejam utilizadas na seleção de candidatos a possíveis novas drogas com ação inibitória sobre o sítio catalítico dessas duas enzimas.Submitted by PPG Biologia Celular e Molecular (bcm@pucrs.br) on 2020-11-19T18:17:09Z No. of bitstreams: 1 MAURÍCIO_BOFF_DE_ÁVILA_TES.pdf: 3199603 bytes, checksum: f17e228c0a6a268e81447d91afe949e8 (MD5)Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2020-11-30T14:23:27Z (GMT) No. of bitstreams: 1 MAURÍCIO_BOFF_DE_ÁVILA_TES.pdf: 3199603 bytes, checksum: f17e228c0a6a268e81447d91afe949e8 (MD5)Made available in DSpace on 2020-11-30T14:31:34Z (GMT). No. of bitstreams: 1 MAURÍCIO_BOFF_DE_ÁVILA_TES.pdf: 3199603 bytes, checksum: f17e228c0a6a268e81447d91afe949e8 (MD5) Previous issue date: 2020-10-15Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://tede2.pucrs.br:80/tede2/retrieve/179686/MAUR%c3%8dCIO_BOFF_DE_%c3%81VILA_TES.pdf.jpgporPontifícia Universidade Católica do Rio Grande do SulPrograma de Pós-Graduação em Biologia Celular e MolecularPUCRSBrasilEscola de CiênciasDockingAprendizado de MáquinaInhACDK2Desenho de DrogasCIENCIAS BIOLOGICAS::BIOLOGIA GERALModelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTrabalho não apresenta restrição para publicação3463594373552466096500500600-16345593859312446973590462550136975366info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da PUC_RSinstname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)instacron:PUC_RSTHUMBNAILMAURÍCIO_BOFF_DE_ÁVILA_TES.pdf.jpgMAURÍCIO_BOFF_DE_ÁVILA_TES.pdf.jpgimage/jpeg6144http://tede2.pucrs.br/tede2/bitstream/tede/9445/4/MAUR%C3%8DCIO_BOFF_DE_%C3%81VILA_TES.pdf.jpg43730b294361135e6a2dcacd9f8291c2MD54TEXTMAURÍCIO_BOFF_DE_ÁVILA_TES.pdf.txtMAURÍCIO_BOFF_DE_ÁVILA_TES.pdf.txttext/plain226602http://tede2.pucrs.br/tede2/bitstream/tede/9445/3/MAUR%C3%8DCIO_BOFF_DE_%C3%81VILA_TES.pdf.txtd4911404ce494afbad3236e9608a4c0bMD53ORIGINALMAURÍCIO_BOFF_DE_ÁVILA_TES.pdfMAURÍCIO_BOFF_DE_ÁVILA_TES.pdfapplication/pdf3199603http://tede2.pucrs.br/tede2/bitstream/tede/9445/2/MAUR%C3%8DCIO_BOFF_DE_%C3%81VILA_TES.pdff17e228c0a6a268e81447d91afe949e8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8590http://tede2.pucrs.br/tede2/bitstream/tede/9445/1/license.txt220e11f2d3ba5354f917c7035aadef24MD51tede/94452020-11-30 20:00:27.037oai:tede2.pucrs.br:tede/9445QXV0b3JpemE/P28gcGFyYSBQdWJsaWNhPz9vIEVsZXRyP25pY2E6IENvbSBiYXNlIG5vIGRpc3Bvc3RvIG5hIExlaSBGZWRlcmFsIG4/OS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBvIGF1dG9yIEFVVE9SSVpBIGEgcHVibGljYT8/byBlbGV0cj9uaWNhIGRhIHByZXNlbnRlIG9icmEgbm8gYWNlcnZvIGRhIEJpYmxpb3RlY2EgRGlnaXRhbCBkYSBQb250aWY/Y2lhIFVuaXZlcnNpZGFkZSBDYXQ/bGljYSBkbyBSaW8gR3JhbmRlIGRvIFN1bCwgc2VkaWFkYSBhIEF2LiBJcGlyYW5nYSA2NjgxLCBQb3J0byBBbGVncmUsIFJpbyBHcmFuZGUgZG8gU3VsLCBjb20gcmVnaXN0cm8gZGUgQ05QSiA4ODYzMDQxMzAwMDItODEgYmVtIGNvbW8gZW0gb3V0cmFzIGJpYmxpb3RlY2FzIGRpZ2l0YWlzLCBuYWNpb25haXMgZSBpbnRlcm5hY2lvbmFpcywgY29ucz9yY2lvcyBlIHJlZGVzID9zIHF1YWlzIGEgYmlibGlvdGVjYSBkYSBQVUNSUyBwb3NzYSBhIHZpciBwYXJ0aWNpcGFyLCBzZW0gP251cyBhbHVzaXZvIGFvcyBkaXJlaXRvcyBhdXRvcmFpcywgYSB0P3R1bG8gZGUgZGl2dWxnYT8/byBkYSBwcm9kdT8/byBjaWVudD9maWNhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede2.pucrs.br/tede2/PRIhttps://tede2.pucrs.br/oai/requestbiblioteca.central@pucrs.br||opendoar:2020-11-30T22:00:27Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)false
dc.title.por.fl_str_mv Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
title Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
spellingShingle Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
Ávila, Maurício Boff de
Docking
Aprendizado de Máquina
InhA
CDK2
Desenho de Drogas
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
title_short Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
title_full Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
title_fullStr Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
title_full_unstemmed Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
title_sort Modelos computacionais para previsão de afinidade entre ligantes e proteínas alvos para o desenvolvimento de fármacos
author Ávila, Maurício Boff de
author_facet Ávila, Maurício Boff de
author_role author
dc.contributor.advisor1.fl_str_mv Azevedo Junior, Walter Filgueira de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4183276948524704
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0602658985169124
dc.contributor.author.fl_str_mv Ávila, Maurício Boff de
contributor_str_mv Azevedo Junior, Walter Filgueira de
dc.subject.por.fl_str_mv Docking
Aprendizado de Máquina
InhA
CDK2
Desenho de Drogas
topic Docking
Aprendizado de Máquina
InhA
CDK2
Desenho de Drogas
CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
dc.subject.cnpq.fl_str_mv CIENCIAS BIOLOGICAS::BIOLOGIA GERAL
description Antibiotics are the most successful drugs of the 20th century and, probably, of the entire history of medicine. However, as the years went by, discoveries of new antimicrobial compounds became increasingly scarce and bacterial resistance is in evidence. From this, we selected the enzyme Trans-2-Enoyl (ACP) Reductase (InhA) (E.C. 1.3.1.9) as one of the focuses of this work, because it plays a crucial role in the anti-tuberculosis treatment. In the same way that new strains of resistant bacteria can bring complications for the coming years of public health, neoplasms are diseases that have been known for many years, but which still need to be resolved quickly and without serious side effects. Cancer can be defined as a set of cells with uncontrolled growth and the ability to invade new tissues. A directed look to this need for new chemotherapy drugs against neoplasms, we chose the enzyme Cyclin-dependent Kinase type 2 (CDK2) (E.C. 2.7.11.22) as another target of the work, mainly due to its controlling activity of the eukaryotic cell cycle. In line with the current needs exposed before, the general objective of the present work is to determine the structural bases for the inhibition of the enzymes InhA and CDK2 with a focus on the interactions that occur in the protein-ligand system. The work was carried out using the methods of Bioinspired Computing, a field of Natural Computing, which bases its approach on processes observed in nature. The methodological basis of the study followed the steps of performing molecular docking to find energetic terms that best described the interactions of each of the enzymes with possible non-covalent ligands. With the aid of the SAnDReS software, Machine Learning Methods were used, based on the classic energy terms present in the MVD, AD4 and Vina programs, polynomial score functions were constructed in an attempt to predict the degree of affinity between the two biological systems before cited and possible candidates for inhibitors. For InhA, the two polynomial functions, Polscore231 (Vina) ( = 0.709; p-value1 <0.03) and Polscore345 (AD4) ( = 0.717; p-value1 <0.03) obtained satisfactory statistical values, placing themselves as good options in inhibitor selection studies. For CDK2, the Polscore60 (MVD) polynomial function ( = 0.328; p-value1 <0.02) was the best option both in predicting the affinity of a set of structures with a resolution less than 1.5Å (HRIC50), and for the set of structures containing only CDK's2. From the correlation values obtained for each of the functions, is suggested that in later studies the polynomial functions are used in the selection of candidates for possible new drugs with inhibitory action on the catalytic site of these two enzymes.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-11-30T14:31:34Z
dc.date.issued.fl_str_mv 2020-10-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://tede2.pucrs.br/tede2/handle/tede/9445
url http://tede2.pucrs.br/tede2/handle/tede/9445
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 3463594373552466096
dc.relation.confidence.fl_str_mv 500
500
600
dc.relation.cnpq.fl_str_mv -1634559385931244697
dc.relation.sponsorship.fl_str_mv 3590462550136975366
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Biologia Celular e Molecular
dc.publisher.initials.fl_str_mv PUCRS
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Ciências
publisher.none.fl_str_mv Pontifícia Universidade Católica do Rio Grande do Sul
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da PUC_RS
instname:Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron:PUC_RS
instname_str Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
instacron_str PUC_RS
institution PUC_RS
reponame_str Biblioteca Digital de Teses e Dissertações da PUC_RS
collection Biblioteca Digital de Teses e Dissertações da PUC_RS
bitstream.url.fl_str_mv http://tede2.pucrs.br/tede2/bitstream/tede/9445/4/MAUR%C3%8DCIO_BOFF_DE_%C3%81VILA_TES.pdf.jpg
http://tede2.pucrs.br/tede2/bitstream/tede/9445/3/MAUR%C3%8DCIO_BOFF_DE_%C3%81VILA_TES.pdf.txt
http://tede2.pucrs.br/tede2/bitstream/tede/9445/2/MAUR%C3%8DCIO_BOFF_DE_%C3%81VILA_TES.pdf
http://tede2.pucrs.br/tede2/bitstream/tede/9445/1/license.txt
bitstream.checksum.fl_str_mv 43730b294361135e6a2dcacd9f8291c2
d4911404ce494afbad3236e9608a4c0b
f17e228c0a6a268e81447d91afe949e8
220e11f2d3ba5354f917c7035aadef24
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da PUC_RS - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)
repository.mail.fl_str_mv biblioteca.central@pucrs.br||
_version_ 1799765347633463296