A predictive maintenance approach based in big data analysis

Detalhes bibliográficos
Autor(a) principal: Silva, João Pedro Gonçalves da
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/20241
Resumo: With the evolution of information systems, the data flow escalated into new boundaries, allowing enterprises to further develop their approach to important sectors, such as production, logistic, IT and especially maintenance. This last field accompanied industry developments hand in hand in each of the four iterations. More specifically, the fourth iteration (Industry 4.0) marked the capability to connect machines and further enhance data extraction, which allowed companies to use a new data-driven approach into their specific problems. Nevertheless, with a wider flow of data being generated, understanding data became a priority for maintenance-related decision-making processes. Therefore, the correct elaboration of a roadmap to apply predictive maintenance (PM) is a key step for companies. A roadmap can allow a safe approach, where resources may be placed strategically with a ratio of low risk and high reward. By analysing multiple approaches to PM, a generic model is proposed, which contains an array of guidelines. This combination aims to assist maintenance departments that wish to understand the feasibility of implementing a predictive maintenance solution in their company. To understand the utility of the developed artefact, a practical application was conducted to a production line of HFA, a Portuguese Small and Medium Enterprise.
id RCAP_019da81818672af067b84bb56a4986e8
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/20241
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A predictive maintenance approach based in big data analysisIndustry 4.0Predictive maintenanceBig dataData miningIndústria 4.0Manutenção preditivaWith the evolution of information systems, the data flow escalated into new boundaries, allowing enterprises to further develop their approach to important sectors, such as production, logistic, IT and especially maintenance. This last field accompanied industry developments hand in hand in each of the four iterations. More specifically, the fourth iteration (Industry 4.0) marked the capability to connect machines and further enhance data extraction, which allowed companies to use a new data-driven approach into their specific problems. Nevertheless, with a wider flow of data being generated, understanding data became a priority for maintenance-related decision-making processes. Therefore, the correct elaboration of a roadmap to apply predictive maintenance (PM) is a key step for companies. A roadmap can allow a safe approach, where resources may be placed strategically with a ratio of low risk and high reward. By analysing multiple approaches to PM, a generic model is proposed, which contains an array of guidelines. This combination aims to assist maintenance departments that wish to understand the feasibility of implementing a predictive maintenance solution in their company. To understand the utility of the developed artefact, a practical application was conducted to a production line of HFA, a Portuguese Small and Medium Enterprise.Através da evolução dos sistemas de informação (SI), o fluxo de dados atingiu novos limites, permitindo assim às empresas desenvolver diferentes focos e aplicar novas perspetivas nos departamentos fulcrais à sua atividade, tais como produção, logística e, mais especificamente, a manutenção. Esta última componente evolui paralelamente à indústria, evidenciando novos desenvolvimentos em cada iteração da mesma. Particularmente, a quarta revolução industrial destacou-se pela capacidade de conectar máquinas entre si e pela evolução posterior do processo de extração de dados. Assim, surgiu uma nova perspetiva focada na utilização dos dados extraídos para resolução de problemas. Consequentemente, esta inovação fomentou uma redefinição das prioridades nas decisões tomadas relativas à manutenção, dando primazia à compreensão dos dados gerados. Por conseguinte, a correta elaboração de um plano de implementação de manutenção preditiva (MP) destaca-se como um passo fulcral para as empresas. Este plano tem como objetivo permitir uma abordagem mais segura, possibilitando assim alocar os recursos estrategicamente, reduzindo o risco e potenciando a recompensa. Mediante a análise de múltiplas abordagens de MP, é proposto um modelo genérico que reúne um conjunto diretrizes. Este tem intuito de auxiliar os departamentos de manutenção que pretendem compreender a viabilidade da instalação de uma solução de MP na empresa. A fim de perceber a utilidade dos artefactos desenvolvidos, foi realizada uma aplicação prática do modelo numa pequena e média empresa (PME).2020-03-27T12:42:52Z2019-12-09T00:00:00Z2019-12-092019-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/20241TID:202459730engSilva, João Pedro Gonçalves dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:47:06Zoai:repositorio.iscte-iul.pt:10071/20241Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:49.189037Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A predictive maintenance approach based in big data analysis
title A predictive maintenance approach based in big data analysis
spellingShingle A predictive maintenance approach based in big data analysis
Silva, João Pedro Gonçalves da
Industry 4.0
Predictive maintenance
Big data
Data mining
Indústria 4.0
Manutenção preditiva
title_short A predictive maintenance approach based in big data analysis
title_full A predictive maintenance approach based in big data analysis
title_fullStr A predictive maintenance approach based in big data analysis
title_full_unstemmed A predictive maintenance approach based in big data analysis
title_sort A predictive maintenance approach based in big data analysis
author Silva, João Pedro Gonçalves da
author_facet Silva, João Pedro Gonçalves da
author_role author
dc.contributor.author.fl_str_mv Silva, João Pedro Gonçalves da
dc.subject.por.fl_str_mv Industry 4.0
Predictive maintenance
Big data
Data mining
Indústria 4.0
Manutenção preditiva
topic Industry 4.0
Predictive maintenance
Big data
Data mining
Indústria 4.0
Manutenção preditiva
description With the evolution of information systems, the data flow escalated into new boundaries, allowing enterprises to further develop their approach to important sectors, such as production, logistic, IT and especially maintenance. This last field accompanied industry developments hand in hand in each of the four iterations. More specifically, the fourth iteration (Industry 4.0) marked the capability to connect machines and further enhance data extraction, which allowed companies to use a new data-driven approach into their specific problems. Nevertheless, with a wider flow of data being generated, understanding data became a priority for maintenance-related decision-making processes. Therefore, the correct elaboration of a roadmap to apply predictive maintenance (PM) is a key step for companies. A roadmap can allow a safe approach, where resources may be placed strategically with a ratio of low risk and high reward. By analysing multiple approaches to PM, a generic model is proposed, which contains an array of guidelines. This combination aims to assist maintenance departments that wish to understand the feasibility of implementing a predictive maintenance solution in their company. To understand the utility of the developed artefact, a practical application was conducted to a production line of HFA, a Portuguese Small and Medium Enterprise.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-09T00:00:00Z
2019-12-09
2019-10
2020-03-27T12:42:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/20241
TID:202459730
url http://hdl.handle.net/10071/20241
identifier_str_mv TID:202459730
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134790303088640