A predictive maintenance approach based in big data analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/20241 |
Resumo: | With the evolution of information systems, the data flow escalated into new boundaries, allowing enterprises to further develop their approach to important sectors, such as production, logistic, IT and especially maintenance. This last field accompanied industry developments hand in hand in each of the four iterations. More specifically, the fourth iteration (Industry 4.0) marked the capability to connect machines and further enhance data extraction, which allowed companies to use a new data-driven approach into their specific problems. Nevertheless, with a wider flow of data being generated, understanding data became a priority for maintenance-related decision-making processes. Therefore, the correct elaboration of a roadmap to apply predictive maintenance (PM) is a key step for companies. A roadmap can allow a safe approach, where resources may be placed strategically with a ratio of low risk and high reward. By analysing multiple approaches to PM, a generic model is proposed, which contains an array of guidelines. This combination aims to assist maintenance departments that wish to understand the feasibility of implementing a predictive maintenance solution in their company. To understand the utility of the developed artefact, a practical application was conducted to a production line of HFA, a Portuguese Small and Medium Enterprise. |
id |
RCAP_019da81818672af067b84bb56a4986e8 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/20241 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A predictive maintenance approach based in big data analysisIndustry 4.0Predictive maintenanceBig dataData miningIndústria 4.0Manutenção preditivaWith the evolution of information systems, the data flow escalated into new boundaries, allowing enterprises to further develop their approach to important sectors, such as production, logistic, IT and especially maintenance. This last field accompanied industry developments hand in hand in each of the four iterations. More specifically, the fourth iteration (Industry 4.0) marked the capability to connect machines and further enhance data extraction, which allowed companies to use a new data-driven approach into their specific problems. Nevertheless, with a wider flow of data being generated, understanding data became a priority for maintenance-related decision-making processes. Therefore, the correct elaboration of a roadmap to apply predictive maintenance (PM) is a key step for companies. A roadmap can allow a safe approach, where resources may be placed strategically with a ratio of low risk and high reward. By analysing multiple approaches to PM, a generic model is proposed, which contains an array of guidelines. This combination aims to assist maintenance departments that wish to understand the feasibility of implementing a predictive maintenance solution in their company. To understand the utility of the developed artefact, a practical application was conducted to a production line of HFA, a Portuguese Small and Medium Enterprise.Através da evolução dos sistemas de informação (SI), o fluxo de dados atingiu novos limites, permitindo assim às empresas desenvolver diferentes focos e aplicar novas perspetivas nos departamentos fulcrais à sua atividade, tais como produção, logística e, mais especificamente, a manutenção. Esta última componente evolui paralelamente à indústria, evidenciando novos desenvolvimentos em cada iteração da mesma. Particularmente, a quarta revolução industrial destacou-se pela capacidade de conectar máquinas entre si e pela evolução posterior do processo de extração de dados. Assim, surgiu uma nova perspetiva focada na utilização dos dados extraídos para resolução de problemas. Consequentemente, esta inovação fomentou uma redefinição das prioridades nas decisões tomadas relativas à manutenção, dando primazia à compreensão dos dados gerados. Por conseguinte, a correta elaboração de um plano de implementação de manutenção preditiva (MP) destaca-se como um passo fulcral para as empresas. Este plano tem como objetivo permitir uma abordagem mais segura, possibilitando assim alocar os recursos estrategicamente, reduzindo o risco e potenciando a recompensa. Mediante a análise de múltiplas abordagens de MP, é proposto um modelo genérico que reúne um conjunto diretrizes. Este tem intuito de auxiliar os departamentos de manutenção que pretendem compreender a viabilidade da instalação de uma solução de MP na empresa. A fim de perceber a utilidade dos artefactos desenvolvidos, foi realizada uma aplicação prática do modelo numa pequena e média empresa (PME).2020-03-27T12:42:52Z2019-12-09T00:00:00Z2019-12-092019-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/20241TID:202459730engSilva, João Pedro Gonçalves dainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:47:06Zoai:repositorio.iscte-iul.pt:10071/20241Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:22:49.189037Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A predictive maintenance approach based in big data analysis |
title |
A predictive maintenance approach based in big data analysis |
spellingShingle |
A predictive maintenance approach based in big data analysis Silva, João Pedro Gonçalves da Industry 4.0 Predictive maintenance Big data Data mining Indústria 4.0 Manutenção preditiva |
title_short |
A predictive maintenance approach based in big data analysis |
title_full |
A predictive maintenance approach based in big data analysis |
title_fullStr |
A predictive maintenance approach based in big data analysis |
title_full_unstemmed |
A predictive maintenance approach based in big data analysis |
title_sort |
A predictive maintenance approach based in big data analysis |
author |
Silva, João Pedro Gonçalves da |
author_facet |
Silva, João Pedro Gonçalves da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, João Pedro Gonçalves da |
dc.subject.por.fl_str_mv |
Industry 4.0 Predictive maintenance Big data Data mining Indústria 4.0 Manutenção preditiva |
topic |
Industry 4.0 Predictive maintenance Big data Data mining Indústria 4.0 Manutenção preditiva |
description |
With the evolution of information systems, the data flow escalated into new boundaries, allowing enterprises to further develop their approach to important sectors, such as production, logistic, IT and especially maintenance. This last field accompanied industry developments hand in hand in each of the four iterations. More specifically, the fourth iteration (Industry 4.0) marked the capability to connect machines and further enhance data extraction, which allowed companies to use a new data-driven approach into their specific problems. Nevertheless, with a wider flow of data being generated, understanding data became a priority for maintenance-related decision-making processes. Therefore, the correct elaboration of a roadmap to apply predictive maintenance (PM) is a key step for companies. A roadmap can allow a safe approach, where resources may be placed strategically with a ratio of low risk and high reward. By analysing multiple approaches to PM, a generic model is proposed, which contains an array of guidelines. This combination aims to assist maintenance departments that wish to understand the feasibility of implementing a predictive maintenance solution in their company. To understand the utility of the developed artefact, a practical application was conducted to a production line of HFA, a Portuguese Small and Medium Enterprise. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-09T00:00:00Z 2019-12-09 2019-10 2020-03-27T12:42:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/20241 TID:202459730 |
url |
http://hdl.handle.net/10071/20241 |
identifier_str_mv |
TID:202459730 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134790303088640 |