Predictive maintenance mechanisms for heating equipment

Detalhes bibliográficos
Autor(a) principal: Santiago, Ana Rita Antunes
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/29723
Resumo: Heating appliances such as HVAC systems are susceptible to failures that may result in disruption of important operations. With this in mind, it is relevant to increase the efficiency of those solutions and diminish the number of detected faults. Moreover, understand why these failures occur that be relevant for future devices. Thus, there is a need to develop methods that allow the identification of eventual failures before they occur. This is only achievable when solutions capable of analyzing data, interpret it and obtaining knowledge from it, are created. This dissertation presents an infrastructure that supports the inspection of failure detection in boilers, making viable to forecast faults and errors. A major part of the work is data analysis and the creation of procedures that can process it. The main goal is creating an efficient system able to identify, predict and notify the occurrence of failure events.
id RCAP_745b38df8541f369010762a6bfd4f92d
oai_identifier_str oai:ria.ua.pt:10773/29723
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predictive maintenance mechanisms for heating equipmentBig Data applicationsMachine LearningHVACPredictive MaintenanceData processingData AnalysisHeating appliances such as HVAC systems are susceptible to failures that may result in disruption of important operations. With this in mind, it is relevant to increase the efficiency of those solutions and diminish the number of detected faults. Moreover, understand why these failures occur that be relevant for future devices. Thus, there is a need to develop methods that allow the identification of eventual failures before they occur. This is only achievable when solutions capable of analyzing data, interpret it and obtaining knowledge from it, are created. This dissertation presents an infrastructure that supports the inspection of failure detection in boilers, making viable to forecast faults and errors. A major part of the work is data analysis and the creation of procedures that can process it. The main goal is creating an efficient system able to identify, predict and notify the occurrence of failure events.Equipamentos de Climatização, como caldeiras e ar-condicionado, são suscetíveis a falhas que podem resultar na interrupção de operações importantes. Assim, é relevante aumentar a eficiência dessas soluções e diminuir o número de falhas detectadas. Além disso, entender o porquê da ocorrências dessas falhas torna-se importante para a criação de equipamentos futuros. Existe, assim, a necessidade de desenvolver métodos que permitam a identificação de eventuais falhas antes que elas ocorram. Isso só é possível quando são criadas soluções capazes de analisar dados, interpretá-los e obter conhecimento a partir deles. Esta dissertação apresenta uma infraestrutura que suporta a inspeção de detecção de falhas em caldeiras, viabilizando a previsão de falhas e erros. Uma parte importante do trabalho é a análise de dados e a criação de procedimentos que possam processá-los. O objetivo principal é criar um sistema eficiente capaz de identificar, prever e notificar a ocorrência de eventos de falha.2020-11-05T11:43:34Z2019-07-01T00:00:00Z2019-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29723engSantiago, Ana Rita Antunesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:28:24Zoai:ria.ua.pt:10773/29723Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:28:24Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predictive maintenance mechanisms for heating equipment
title Predictive maintenance mechanisms for heating equipment
spellingShingle Predictive maintenance mechanisms for heating equipment
Santiago, Ana Rita Antunes
Big Data applications
Machine Learning
HVAC
Predictive Maintenance
Data processing
Data Analysis
title_short Predictive maintenance mechanisms for heating equipment
title_full Predictive maintenance mechanisms for heating equipment
title_fullStr Predictive maintenance mechanisms for heating equipment
title_full_unstemmed Predictive maintenance mechanisms for heating equipment
title_sort Predictive maintenance mechanisms for heating equipment
author Santiago, Ana Rita Antunes
author_facet Santiago, Ana Rita Antunes
author_role author
dc.contributor.author.fl_str_mv Santiago, Ana Rita Antunes
dc.subject.por.fl_str_mv Big Data applications
Machine Learning
HVAC
Predictive Maintenance
Data processing
Data Analysis
topic Big Data applications
Machine Learning
HVAC
Predictive Maintenance
Data processing
Data Analysis
description Heating appliances such as HVAC systems are susceptible to failures that may result in disruption of important operations. With this in mind, it is relevant to increase the efficiency of those solutions and diminish the number of detected faults. Moreover, understand why these failures occur that be relevant for future devices. Thus, there is a need to develop methods that allow the identification of eventual failures before they occur. This is only achievable when solutions capable of analyzing data, interpret it and obtaining knowledge from it, are created. This dissertation presents an infrastructure that supports the inspection of failure detection in boilers, making viable to forecast faults and errors. A major part of the work is data analysis and the creation of procedures that can process it. The main goal is creating an efficient system able to identify, predict and notify the occurrence of failure events.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01T00:00:00Z
2019-07
2020-11-05T11:43:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29723
url http://hdl.handle.net/10773/29723
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817543758365851648